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⇤Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, USA

Email: {khatami, ukarpuzc}@umn.edu
†Department of Electrical and Computer Engineering, University of South Florida, Tampa, Florida, USA

Email: longfei@mail.usf.edu
‡Austin, Texas, USA Email: dashamitabh@gmail.com

§Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
Email: skose@ur.rochester.edu

Abstract—To be able to meet demanding application perfor-

mance requirements within a tight power budget, runtime

power management must track hardware activity at a very

fine granularity in both space and time. This gives rise to

sophisticated power management algorithms, which need the

underlying system to be both highly observable (to be able

to sense changes in instantaneous power demand timely) and

controllable (to be able to react to changes in instantaneous

power demand timely). The end goal is allocating the power

budget, which itself represents a very critical shared resource,

in a fair way among active tasks of execution. Fundamentally,

if not carefully managed, any system-wide shared resource

can give rise to covert communication. Power budget does not

represent an exception, particularly as systems are becoming

more and more observable and controllable. In this paper, we

demonstrate how power management vulnerabilities can enable

covert communication over a previously unexplored, novel class

of covert channels which we will refer to as POWERT channels.

We also provide a comprehensive characterization of the

POWERT channel capacity under various sharing and activity

scenarios. Our analysis based on experiments on representative

commercial systems reveal a peak channel capacity of 121.6 bits

per second (bps).

Keywords-covert channels; power management; power head-

room modulation.

I. INTRODUCTION

Modern computing platforms are fundamentally power lim-
ited [1]. This gives rise to sophisticated runtime power
management – spanning several software and hardware layers
of the system stack – in order to meet diverse and demanding
runtime performance needs within the stringent power budget.
Effective power management requires a highly observable
and controllable system, at a very fine granularity in both
space and time. Observability is necessary to be able to timely
sense; controllability, to be able to timely react, to changes in
the instantaneous power consumption of the overall system.
Activity monitors in the form of performance counters or
sensors dispersed across chip serve the purpose. Exposing
fine grain hardware knobs for power management to the
software layers of the system stack can also help, as, for
example, it is the case for Intel’s Running Average Power
Limit (RAPL) interface [2].

By distributing the power budget carefully among active
tasks of execution, runtime power management has to
guarantee that the system-wide power consumption never
exceeds the system-wide power budget. The power budget
itself represents a very critical shared resource. If not carefully
managed, any shared (hardware or software) resource can
easily enable information leakage via covert communica-
tion [3], [4], [5]. As a fundamental shared resource, power
budget unfortunately does not represent an exception. The
abundance of specialized activity monitors, their exposure
to software layers, and the need for tight global control to
avoid power budget overshoots, exacerbate the situation.

In this study, we introduce, demonstrate and characterize
a novel class of covert communication over previously
unexplored channels triggered by power management vulner-
abilities. In the following, we will refer to this novel class as
POWERT (POWER + c ovERT) channels. Key contributions
of this study include:
• Introduction and detailed analysis of covert commu-
nication over POWERT channels; a novel, previously
unexplored class of covert channels induced by power
management vulnerabilities;

• Demonstration of POWERT communication on two
representative commercial systems;

• Comprehensive, analytical and experimental characteriza-
tion of the POWERT channel capacity.
In the following, Section II covers the basics of POWERT

communication; Section III, channel specifics; Sections IV
and V, evaluation; Section VI, countermeasures; Section VII,
related work; and Section VIII, a summary of our findings.

II. POWERT COMMUNICATION BASICS

We start the characterization with basic definitions and the
threat model in Section II-A and continue in Section II-B
with an overview of inevitable power management practices
that enable POWERT channels. Section II-C provides a
conceptual explanation of how emerging power manage-
ment practices facilitate covert channels. We conclude by
demonstrating a proof-of-concept POWERT attack on a
representative commercial system in Section II-D.
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A. Threat Model

Fig. 2 depicts two malicious entities (the source and the
sink, respectively), not permitted to communicate legitimately
through overt channels, performing a covert channel attack.
Without loss of generality, these entities may correspond to
hardware (such as cores or functional units), or software shar-
ing hardware resources [7]. The transmitting end, the source,
has access to sensitive information (such as a secret key),
however, not to any overt channel for data communication.
The receiving end, the sink, on the other hand, has access
to an overt channel (for potential data communication), but
not to sensitive information. By communicating with the
source over a covert channel, the sink can not only acquire
access to sensitive information, but also can subsequently
send this information to third parties over the overt channel.
As a representative example, the source can be a contacts
manager, and the sink, a weather application, in a mobile
system [7]. By construction, such covert communication is
hidden from other hardware or software entities sharing the
same system.

B. Power Budget: A Critical Shared Resource

Modern power-limited computing platforms benefit from
sophisticated power management in two distinct ways:

(i) Prevention of serious power budget overshoots, which
can physically damage the system;

(ii) Optimal distribution of the shared power budget among
active tasks of execution, to satisfy possibly conflicting
performance requirements in a fair and efficient manner.
Fig. 1a illustrates an overview of inevitable power man-

agement practices in modern systems. System-level control
at the hardware-software interface directs a global controller,
which in turn orchestrates local controllers dispersed across

chip. Local controllers periodically evaluate monitored local
activity to adjust the operating point (i.e., the operating
voltage or frequency). This type of distributed control is
becoming the norm, as local controllers can react to locally
confined changes in the instantaneous power demand much
faster. If a reallocation of the system wide power budget
becomes necessary, system-level control alerts the global
controller, which in turn makes the local controllers adjust
the local operating voltage and frequencies accordingly.

Fig. 1b depicts a generic control loop, which is equally
applicable to both global and local controllers in Fig. 1a. Be
it local or global, the controller modulates the operating
point as a function of the power limit provided at its
input. The goal always is delivering the maximum possible
performance without violating the power limit, which reflects
(instanteneous) power budget induced constraints. Various
options exist for operating point modulation, including
adjustments to the operating voltage and frequency (via
DVFS, Dynamic Voltage and Frequency Scaling), selective
shut-down of idle resources (via power gating) or both.

To summarize, system-level control imposes an instan-
taneous power budget, which the global controller has to
meet via orchestrating local controllers. Local controllers in
turn enforce necessary adjustments to local operating points.
In order to prevent power budget overshoots, controllers
periodically monitor the impact of these operating point
adjustments on the instantaneous power consumption.

C. POWERT Communication via Power Headroom Modula-
tion (PHM)

Following the threat model from Fig. 2, let us assume that a
source application, which has access to sensitive information,
shares processor resources with a sink application (possibly
along with other applications). Controllers usually modulate
the operating point (by, e.g., DVFS) periodically. This is
because activity monitors time-sample the system at regular
intervals. The period of operating point adjustments, tPM , is a
function of the period of activity monitors along with the time
it takes to perform the actual change in the operating point
(which typically incurs the latency across the power/clock
distribution networks and of voltage regulators [6]). The
period tPM is usually in the order of several processor clock
cycles. By construction, the source and the sink are very well
aware of this period. Moreover, typical power management
algorithms are of predictive nature and extrapolate predictions
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Figure 3: POWERT attack example.

from a history of monitored activity which are tPM apart in
time from each other.

If no other application resides in the system, but the source
and the sink, the source can easily modulate the share of
the power budget available to the sink, to encode binary
information. This is possible simply because the chip-wide
power budget is a shared resource. In the following, we will
refer to the sink’s share of the power budget as the power
headroom. The source can easily control its own activity,
and thereby, its own power consumption. Then, what is left
to the sink is the power budget minus the source’s power
consumption, which forms the power headroom.

The procedure is straight-forward: To encode a logic 1,
the source can run a power hungry virus. In this manner,
the source can reach its own power budget limit, and taint
its local activity history to trick the controllers. To prevent
the instantaneous (system-wide) power consumption exceed
the available budget as a result of excessive consumption
at the source, the controllers will likely trigger emergency
power throttling at the sink. The power headroom becomes
practically zero. Under regular activity at the source (includ-
ing no activity), on the other hand, such throttling events at
the sink become much less likely. Therefore, by tracking the
power headroom, the sink can clearly distinguish extremely
high activity from other activity levels at the source. If, for
example, the source chooses to encode a logic 0 (1) by no
(extreme) activity, the sink can decode a sizable positive
power headroom as a logic 0, and any power headroom
change (caused by source’s activity) as a logic 1.

Other applications sharing the same processor resources
can challenge this type of covert communication between
the source and the sink. Inevitably, sharing induces noise
in the covert channel, which can reduce the correlation
between distinct activity patters at the source (used to encode
information by the source) and the power headroom (used
to decode information by the sink). At the same time,
power consumption of sharing applications can also cause
a faster onset of throttling at the sink (as the source is
attempting to send a logic 1, following the previous example).
Therefore, if the sink chooses to quantify its available power
headroom (i.e., to decode the source’s message bit by bit)
by tracking throttling events, sharing can render faster covert
communication.

D. Anatomy of a POWERT Attack

In the following, we will refer to the entire hierarchy of
the controllers in charge of the power management, as
depicted in Fig. 1, as the Power Manager (PM). In a typical
multi/many-core, the power budget cannot accommodate all
cores operating at the peak performance point at the same
time. Hence, when multiple cores run compute-intensive
workloads simultaneously, PM has to assign a lower operating
frequency to them than the rated peak frequency, in order to
meet the power budget. We will next characterize a POWERT
attack exploiting this inevitable behavior of PM.

Usually, when only one compute-intensive application
is running on one of the cores, PM lets that core run at
the rated maximum frequency. The common outcome for
two compute-intensive applications running at the same
time on two different cores is a lower frequency than
the rated maximum, enforced on both cores. Thereby, a
given application’s activity pattern can directly affect the
performance of other applications running on the system.
Applications like the source and the sink from Fig. 2 can
rely on this phenomenon to communicate with each other
covertly, by affecting the operating frequency and/or voltage,
hence the performance, of each other.

Let us next take a closer look into an example POWERT
attack: The source and the sink are both compute-intensive
applications. The source sends a “1” through the covert
channel by running a compute-intensive workload, and
a “0”, by going into sleep. In order to capture source’s
activity pattern, the sink constantly runs a compute-intensive
workload, as well. As a result, PM slows down the sink when
the source is sending a “1” (i.e., running a compute-intensive
workload), compared to when the source is sending a “0” (i.e.,
going into sleep). The sink therefore can retrieve bits sent by
the source by just tracking its own performance. To measure
its own performance, the sink can simply periodically check
its own progress. Neither the sink, nor the source does need
any system level privilege to this end, which challenges
detecting (and potentially blocking) the attack.

Fig. 3 demonstrates a POWERT attack1, where the source
sends 5 bits through the covert channel at a communication
rate of 1bit/s2, as shown in Fig. 3a. The source becomes

1As we will detail in Section IV, this attack is performed on an Intel
platform.

2We pick a relatively low communication frequency here to ease
illustration and explore higher frequency ranges in Section V.
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Figure 4: Two layer hierarchical power management.

active when sending a “1”, and goes to sleep otherwise.
Fig. 3b captures source’s activity pattern corresponding to
the sent bits. Finally, Fig. 3c depicts sink’s performance, as
measured by the sink itself. Y-axis represents GFLOPS (Giga
Floating Point Operations per Second); the x-axis, time. In
this particular example the compute-intensive sink application
comprises a floating point heavy loop, therefore, GFLOPS
is a good proxy for checking the rate of forward-progress
at the sink. We observe that the GFLOPS rate of the sink
decreases by around 2.5% on average when the source is
active (sending “1”), compared to when the source is sleeping
(sending “0”). The sink can therefore retrieve information
from this covert channel by simply checking its GFLOPS
rate. We fully specify and characterize similar POWERT
attacks on different representative commercial platforms in
Section V.

III. COMMUNICATION RATE (OR FREQUENCY)

Power Manager, PM, constituting the entire hierarchy of
controllers from Fig. 1, orchestrates power consumption of
different entities, where each entity (e.g., cores, caches or
routers) can operate at a different voltage and frequency. Let
us assume that PM is in charge of N different entities, where
Pi depicts the maximum possible power consumption for
entity i, i ranging from 1 to N . Following this definition
and our observations from Section II-D, if the instantaneous
power consumed by each entity i reaches Pi simultaneously,
a power budget overshoot becomes inevitable. In other words,

NX

i=1

Pi > power budget

applies. However, when the system is not highly utilized,
most of the entities become idle and can be power-gated. In
this case, PM can let the few active entities operate at their
peak power consumption, Pi, as long as the overall power
consumption stays below the power budget. As utilization
increases, more entities have to become active at the same
time in order to meet performance goals. Even under less
than 100% utilization, the overall power consumption with
only the active subset of the entities running at Pi may
violate the power budget. To avoid budget violation, PM has
to force all active entities to a lower-power operating point.

As an example, let us assume a four-core processor where
each core consumes 15 Watts at peak and the overall power
budget is 40 Watts. If only two of the cores are active, PM
can let them run at their peak power consumption. If more

than two cores are active, this is not possible anymore. PM
has to distribute the available power budget evenly between
the cores to avoid any budget overshoot. In the case of four
active cores, this translates into each core consuming at most
10 Watts, which inevitably renders a relative slow-down (with
respect to the peak rated performance point corresponding
to 15 Watts) in all four cores.

It is this type of inevitable PM decisions that give rise
to POWERT channels via power headroom modulation
(Section II-C). A malware (such as the source from Fig. 2)
can send information covertly to another malware (such as
the sink from Fig. 2) by modulating the receiving side’s share
of the power budget, i.e., power headroom, and consequently,
performance. The source can also activate a number of
entities, enough to violate the power budget, in order to
send a “1”. In this case, PM has to lower the share of the
power budget of all entities, including the sink at the receiving
end. The sink in turn can retrieve the sent bit (a “1”), by
sensing a slow-down in its own performance. Similarly, to
send a “0”, the source can put multiple entities to sleep to
minimize the chance of violating the power budget (hence,
of the sink being throttled). At the receiving end, the sink
does not sense a slow-down in this case, and translates this
to having received a “0”.

POWERT communication via power headroom modulation
has four phases:
• The first phase spans the time window tUtil, over which

the source enforces changes in the activity, i.e., utilization,
by modifying the number of active entities (or simply its
own activity level).

• The second phase covers the time window tMonitor , over
which activity monitors sense the corresponding change
in the power consumption of the affected entities.

• In the third phase, PM senses the change in the activity
by reading monitors and makes a decision about throttling.
Similar to the second phase, this phase usually takes place
periodically, with a period of tPM (Section II-C).

• The last phase comprises two steps: The first step is
the time it takes for the affected entities to adjust their
operating voltage and frequency to meet the enforced
power budget, tAdjust. The second step is the time it takes
for the sink to sense the changes in its own performance,
tSense.
These four phases together span the duration of communi-

cation, starting from sending a single bit until sensing it at
the receiving end. Pipelined communication by overlapping



phases is also possible: For example, after PM reads the
monitors and makes a new decision (phase three), the
source can start sending the next bit (phase one). This is
because the sink has enough time to sense the changes
(phase four) until the next PM decision (corresponding to
the next bit) takes place. Therefore, the first two phases
together, the third phase, and the fourth phase can form
three distinct stages of a pipeline, to accelerate POWERT
communication. In Section V, we will assume such pipelined
POWERT communication in deriving an upper-bound for
the communication rate (or frequency), rMAX as

(max(tUtil + tMonitor, tPM , tAdjust + tSense))
1

.

PM has to manage N different entities. What distinguishes
an entity is PM’s capability to adjust its operating point
independently. This implies observability and controllability
on a per entity basis. Increasing degrees of system-wide
observability and controllability refine the granularity for
independent operating point adjustment. In other words,
considering the same system, the span (which often translates
into size) of each controllable/observable entity decreases.
This, in turn, leads to a higher entity count N . As an example,
N becomes 48 for POWER8 processors [8]. In this case, a
single centralized PM is very likely to result in sub-optimal
power management, as the latency of collecting data from all
monitors and the complexity of solving a larger optimization
problem both increase drastically with increasing N . This
mandates a hierarchical PM as depicted in Fig. 1.

Without loss of generality, Fig. 4 provides a two-layer
example, which closely mimics the general structure from
Fig. 1. A global controller manages the power budget of
4 different clusters, each containing 3 entities, where the
respective local controller of each cluster distributes the
assigned power budget among the three entities.

The sink and the source can reside in the same cluster.
Under intra-cluster covert communication, the source forces
the local controller of the cluster to throttle the performance
of other entities within the cluster according to the local
power budget. The upper-bound of intra-cluster covert com-
munication rate (or frequency), rMAX,intracluster, hence
becomes

(max(tUtil + tMonitor, tPMlocal
, tAdjust + tSense))

1

where tPMlocal
is the local controller’s decision period.

The sink and the source can be in separate clusters,
as well. Under inter-cluster covert communication, the
source should increase the corresponding cluster’s power
consumption (or even, the power consumption of multiple
clusters) to the point where the global controller has to
limit the power budget of all active clusters, including the
one containing the sink. Then, the local controller of sink’s
cluster adjusts the share of the power budget of each entity of
the cluster accordingly, which inevitably leads to noticeable
performance degradation at sink. Clearly, inter-cluster covert
communication is slower than intra-cluster. An upper-bound

Table I: Evaluated systems.
Intel Xeon E3-1505M v5 Samsung Exynos-5422

µarchitecture Skylake family Cortex-A15 (big) Cortex-A7(little)
# of cores

(threads)
4 (8) 4 (4) 4 (4)

technology

node
14 nm 28 nm

frequency (0.8-2.80) GHz (0.2-2.0) GHz (0.2-1.4) GHz
L1 Inst. 32KB 8-way 32KB 2-way 32KB 2-way
L1 Data 32KB 8-way 32KB 2-way 32KB 2-way

L2 256KB 4-way 2MB 16-way 512KB 8-way
L3 8MB 16-way NA

for inter-cluster covert communication rate (or frequency),
rMAX,intercluster hence becomes

max(tUtil + tMonitor + tComm, tPMglobal
,

tAdjust + tSense + tComm))1

where tComm is the local to global controller communication
latency; and tPMglobal

, global controller’s decision period.

IV. EVALUATION SETUP

A. Evaluated Systems

As a proof-of-concept, we characterize POWERT com-
munication on two representative commercial platforms
(Table I): a laptop machine featuring an Intel Xeon E3-
1505M v5 and Ubuntu 14.04.5; and an ODROID-XU4 board,
featuring a Samsung Exynos-5422 with a processor based
on ARM’s big.LITTLE architecture [9] and Ubuntu 16.04.3
LTS. Both source and sink represent floating-point heavy
applications (Section IV-B). We compile the sink and the
source using GNU GCC version 4.8.4 on the laptop platform,
and GNU GCC version 5.4.0 on the ODROID board, with all
optimizations disabled. To maximize energy efficiency, the
default mode of the operating system’s power manager, on
demand, allocates (by consulting hardware PM) the maximum
possible frequency to the source (during active phases)
and the sink. We do not change this default throughout
the experiments to keep OS induced noise at bay, and to
make sure that indeed hardware PM is making the throttling
decisions. Besides, to minimize the impact of background
noise (in order to better characterize the channel capacity),
we turn off unnecessary OS services.

B. Malware Codes

Fig. 5 depicts the sink code, which resides on the receiving
end of the covert channel. The sink constitutes an infinite
floating-point heavy loop. The sink has full-fledged control
over the mix and count of the executed floating-point instruc-
tions within Run_Float(). The sink samples the channel
every t_Sample seconds and calls sigalrm_handler
function. We set t_Sample to be 20 times smaller than the
(known-to-both-sides) communication period t_Covert,
which leads to 20 samples per bit 3. Periodic interrupt timer
overflows invoke sigalrm_handler function, with a
period of t_Sample. Inside sigalrm_handler the sink

3We set this parameter empirically to maximize decoding accuracy.



1 / / g e t s c a l l e d when t i m e r o v e r f l o w s .
2 s i g a l r m h a n d l e r ( ) {
3

4 P r i n t t o f i l e ( Loop Counter ) ;
5

6 / / s e t s i n t e r r u p t t i m e r .
7 s e t i t i m e r ( t Sample ) ;
8 }
9

10 Main ( ) {
11

12 / / s e t s i n t e r r u p t t i m e r .
13 s e t i t i m e r ( t Sample ) ;
14

15 / / i n f i n i t e w h i l e loop
16 whi le ( 1 ) {
17 Loop Counter ++;
18

19 / / r u n s m u l t i p l e fp i n s t r u c t i o n s .
20 Run Floa t ( ) ;
21 }
22 }

Figure 5: Sink application’s code.

1 / / g e t s c a l l e d when t i m e r o v e r f l o w s .
2 s i g a l r m h a n d l e r ( ) {
3

4 Da ta Index ++;
5

6 / / a c t i v a t e s t h e Power Virus , t o send a 1
7 i f ( Data [ Da ta Index ]=1 && A c t i v e =0) {
8 sys t em ( k i l l −CONT P V i r u s P I D ) ;
9 A c t i v e = 1 ;

10 }
11

12 / / s t o p s t h e Power Virus , t o send a 0
13 i f ( Data [ Da ta Index ]=0 && A c t i v e =1) {
14 sys t em ( k i l l −TSTP P V i r u s P I D ) ;
15 A c t i v e = 0 ;
16 }
17

18 / / s e t s i n t e r r u p t t i m e r .
19 s e t i t i m e r ( t C o v e r t ) ;
20 }
21

22 Main ( ) {
23

24 / / s e t s i n t e r r u p t t i m e r .
25 s e t i t i m e r ( t C o v e r t ) ;
26

27 / / i n f i n i t e w h i l e loop
28 whi le ( 1 ) ;
29 }

Figure 6: Source application’s code.

dumps the loop counter variable, Loop_Counter, which
serves as a proxy for the rate of forward progress, to an output
file. The sink extracts its GFLOPS rate periodically from
Loop_Counter. A third-party application after receiving
this file can also retrieve the data communicated over the
POWERT channel.

On the other end of the POWERT channel, as explained
in Section II-D, the source runs a highly power hungry
application, which we will refer to as the power virus.
On the Intel platform we use the latest version (v2810)
of MPrime [10] to this end, specifically, the Torture

Test mode to maximize the power consumption in active
phases. Similarly, cpuburn-a7 [11] constitutes the power
virus to maximize power consumption on the ARM platform.
Fig. 6 depicts the code of the source application. Similar
to the sink, the source sets an interrupt timer for accu-
rate timing of communication. Every t_Covert seconds,
which represents the communication period (known to both
sides), sigalrm_handler function gets invoked. Inside
sigalrm_handler, the source changes the power virus’s
status from running to idle or vice versa, according to the
value of the next bit to be sent.

C. Communication Protocol
The source sends data in 100-bit long packets, at a rate
known to the sink – every t_Covert seconds following
Section IV-B. At the same time, each packet starts with
a 5-bit preamble which is known to both sides, and to
the third party receiving data from the sink, as well. The
preamble specifically is used by the third party application to
synchronize with the sink and to remove noise from retrieved
information (Section IV-D). To synchronize with the sink at
the start of communication, the source, on the other hand,
sends a long bit-stream of interleaved ones and zeros followed
by a short bit-stream of zeros only (both of known lengths).
The sink periodically probes the channel with a shorter period
than the duration of the ones and zeros in this header. During
probing, when the sink receives these ones and zeros, it
remains active and waits for the short bit-stream of zeros to
arrive. At the end of the short bit stream of zeros, the sink
starts to dump Loop_Counter information to the output
file (according to Fig. 5), as the following bits sent by the
source are the actual data packets.

D. Communication with Third Party
As explained in Section II-A, the sink has access to the
network (an overt channel) to send the retrieved information
to a third party application. The third party is responsible for
decoding this information (which entails 100-bit long data
packets) from a signal similar to the one shown in Fig. 3c.
As explained in Section IV-B, the sink records 20 loop count
samples per each bit sent by the source. The third party
application therefore can use the median of every 20 samples
to represent each bit, in order to remove noise from the data,
and subsequently compare each median value to a threshold,
BitTHR, to find the actual bit value.

The third party application can extract retrieved informa-
tion from the sink bit by bit, even if the sampling rate deviates
from the expected 20 samples per bit. To this end, the third
party application can simply try a few potential sample rates
to decode the known preamble (the first 5 bits of every
100 bit data package) and record the corresponding error, to
settle at the sample rate which results in the minimum error.
A similar method applies for extracting the BitTHR. The
third party in turn can use this sample rate and BitTHR to
decode the actual information. We implement the third party
application in R version 3.4.0.
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E. Design Space Exploration

We explore different POWERT attack scenarios to find
the maximum achievable covert communication rate on
the evaluated systems, including inter- and intra-cluster
communication. To minimize simulation noise, we pin the
source and the sink applications to specific cores during the
entire execution. We also experiment with different number
of source and sink applications, and characterize the channel
capacity for each case.

F. Channel Capacity by Shannon Theorem

We next look into how to derive an upper-bound for channel
capacity from measurements on a given system. Following the
methodology from [12], we quantify channel capacity as the
maximum possible communication bit rate (in bits per second,
bps) under noise according to Shannon’s theorem [13]. To this
end, we model the POWERT channel as a binary asymmetric
channel, as shown in Fig. 7. X = {0, 1} represents the input
alphabet; Y = {0, 1}, the output alphabet. We send one bit
at a time through the channel, which assumes a value 2 X
at the channel input; and 2 Y at channel output. The exit
and entry values are the same with probability 1 − p and
1 − q, respectively, for input values 0 and 1. Otherwise, a
bit flip is the case. From actual measurements we can find
estimates for p, the probability of sending a 0 and receiving
a 1; and q, the probability of sending a 1 and receiving a 0.
POWERT channels are asymmetric by construction as p and
q are not necessarily always equal.

The maximum possible channel capacity per channel use
under noise, C, evolves as a function of p and q, over all
possible probability distributions over the input alphabet [13].
Per channel use in this case corresponds to each bit transfer
attempt through the channel. In other words, C is the
theoretical maximum possible number of bits that we can
send per each bit transfer attempt through a noisy channel.
Hence, the theoretical maximum value of C itself is 1. We can
translate C into the overall channel capacity (over multiple
channel uses, i.e., bit transfer attempts) simply by multiplying
by f , the frequency (or rate) of communication, which reflects
the frequency of bit transfer attempts by definition. That said,
p and q evolve as a function of f (as impact of noise changes
with f ), hence, C depends on f , as well.

For the derivation, we first estimate p and q from mea-
surements over different values of f . We then calculate C
by plugging in p and q into Shannon’s model, and finally
find C ⇥ f for each f considered.
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Figure 8: Single source to single sink communication.

V. EVALUATION

We will next examine POWERT channel characteristics on
the two representative commercial platforms.

A. Case Study I

In this section, we evaluate POWERT communication on the
Intel Xeon system (Section IV-A).
Analytical Upper Bound: We can directly apply the analyti-
cal model from Section III to this 4-core system to derive an
upper bound for communication frequency, as follows (we
will revisit this upper-bound using actual measurements later
in this section): First we extract tUtil of the evaluated system.
We find tUtil by altering the activity status of MPrime from
running to idle and the other way around continuously for a
fixed time window, ttest. Then, we count how many status
changes happens during the ttest window, NUtil. We extract
tUtil from the ratio ttest/NUtil, which is around 709.2µs
for the evaluated system. We estimate tMonitor to be around
250µs [14]; and tPM , around 1ms [15]. This system features
on-chip voltage regulation with a tAdjust of around 100-
200ns [16]. Finally, tSense depends on the sink application’s
timer precision, which for the evaluated system is 1µs. Based
on these parameters, the upper-bound for channel capacity,
for C=1 and using C ⇥ fMAX becomes

(max(709.2µs+ 250µs, 1ms, 200ns+ 1µs))
1

= 1Kbps.

This upper bound applies irrespective of the number
of active source and sink instances, as all copies operate
simultaneously.
Measurement-based Characterization for Single Source,

Single Sink: We next characterize covert communication
through POWERT channels using the methodology from
Section IV-E. We start with single source to single sink
communication, each running on a separate core.

Fig. 8 shows the channel capacity on the left y-axis for
different communication frequencies (x-axis). The right y-
axis, on the other hand, represents C (Section IV-F): the
actual number of bits we can send per each bit transfer
attempt through the channel, which has a continuous range
of [0,1] bits. For instance, a C of 0.5 indicates that we can
send only 0.5 bit of information per each bit transfer attempt.
Therefore, channel capacity (left y-axis) simply corresponds
to C (right y-axis) multiplied by per bit communication
frequency (x-axis), i.e., the frequency of bit transfer attempts.
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(a) First Sink
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Figure 9: Single source to two sink communication.

As Fig. 8 indicates, for lower than approx. 100Hz fre-
quencies, we see a relatively constant C of around 0.65
on average. However, for larger frequencies than 100Hz, C
starts to drop since many of the OS background tasks, the
main source of the background noise for POWERT channels,
have similar activity rates. The peak channel capacity in this
case is around 91.3 bps (which, as expected, is less than the
channel capacity cap of 1Kbps we derived previously) at a
communication frequency of around 124.1Hz. In this case,
sink’s GFLOPS rate differs by 2.56% depending on the bit
value sent by the source; i.e., logic 0 (idle source) vs. logic
1 (active source).

Measurement-based Characterization for Single Source,

Multiple Sink: A higher number of active cores decreases the
available power headroom, and consequently, increases the
likelihood of throttling. To quantify this effect, we increase
the number of active cores by instantiating multiple copies
of the sink. This, by construction, cannot disturb information
sent by the source through the POWERT channel, in the
form of activity change. Each of the sink instances stays
constantly active, running the same floating point heavy loop.
Therefore, after initialization, GFLOPS rate of each sink
instance can only change, primarily, as a function of source’s
activity, and not of other sinks’.

Fig. 9 characterizes the channel for a single source com-
municating with two sinks. Each of the sinks and the source
run on three separate cores. Fig.s 9a and 9b characterize
POWERT communication for the two sinks separately. We
observe that C of both sink instances remains above 0.8
for frequencies lower than 130Hz, and starts to fall for
frequencies greater than 150Hz. One sink instance achieves a
peak channel capacity of approx. 121.6bps; the other one, of
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Figure 10: Two source to single sink communication.

approx. 105.8bps; both at a similar communication frequency
of around 133.0Hz. The difference between GFLOPS levels
of each sink instance becomes approx. 2.67%, which is 4.6%
larger than the single sink outcome. As a larger gap between
GFLOPS levels of each sink (leading to easier decoding by
the third party application) makes communication more robust
to noise, we observe the peak channel capacity at a higher
communication frequency in this case. At the same time, C
at low frequencies is higher on average when compared to
the single sink case.

When we increase the number of sink instances to 3,
malware code (including the source) occupies all 4 cores of
the evaluated system. In this case, we observe a significant
drop in C, irrespective of the communication frequency.
This is because, full-load pushes the system to its limits
– be it power or thermal budget, which triggers throttling.
As all cores become active at the same time, PM has to
enforce a strict power budget across the board. In the end,
the source can only modulate the power headroom of the
sink instances by controlling its own activity, hence power
consumption. Under full-load, the source does not have
much room left to control its own consumption to start with.
Generally, even if the malware code does not occupy the
entire system, full-load can be the case due to utilization by
other applications running on the system. Under full-load,
covert communication through POWERT channels becomes,
by construction, infeasible.
Measurement-based Characterization for Multiple Source,

Single Sink: We conclude the first case study with channel
characterization when multiple instances of the source send
the exact same data to a single sink. Having multiple
instances of power virus getting activated and deactivated
simultaneously increases the gap between the power demand
when the source instances are sending a logic 0 vs. when
the source instances are sending a logic 1. This can result
in a more pronounced difference between the two GFLOPS
levels (corresponding to logic 0 and logic 1 respectively) at
the sink.

Fig. 10 characterizes the channel for two source instances
communicating with a single sink, each running on a separate
core. The peak channel capacity reaches approx. 17.2bps
at a communication frequency of around 24.9Hz, which is
significantly lower compared to the single source scenario.
Although the difference between GFLOPS levels at the sink is
about 15.2% on average, channel capacity remains relatively
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Figure 11: Channel characterization within little cluster: single (a), two (b), three (c) source to sink communication.

low, since – similar to under full-load – we observe more
information loss in the channel due to throttling. As the
MPrime (the power virus at source) is extremely power
hungry, even having two instances of MPrime running on the
system (along with an instance of the floating point heavy
sink application) causes throttling. Therefore, increasing
number of source instances does not improve the POWERT
communication rate on this platform.

B. Case Study II
In this section, we evaluate POWERT communication on the
ARM system (Section IV-A).
Analytical Upper Bound: For this 8-core heterogeneous
platform, as well, we can apply the analytical model from
Section III to estimate an upper bound for communication
rate, and hence, channel capacity: First we extract tUtil

of the evaluated system, mimicking the same method as
the first case study (Section V-A). We keep activating and
deactivating cpuburn-a7 (the power virus at source in this
case) continuously for a fixed time window, ttest. Then, we
count the number of status changes during the ttest window,
NUtil, and calculate tUtil using ttest/NUtil. For this platform,
tUtil is around 2.1ms. We estimate tMonitor to be around
250µs [14]; and tSense, the platform’s timer precision, to
be around 1µs. Using conservative estimates for the rest
of the parameters which were not explicitly reported in the
literature, C ⇥ fMAX , for C = 1, becomes 0.42Kbps.

We will next look into POWERT channel characteristics
using the methodology from Section IV-E.

Measurement-based Characterization for Little-to-Little

POWERT Communication: We first characterize POWERT
channels within the little cluster only. Fig. 11a provides
channel characteristics for single source to single sink
communication, where the source and the sink run on distinct
little cores. For lower communication rates (x-axis), C, the
actual number of bits sent per channel use (right y-axis), is
close to 1, indicating almost perfect communication. However,
as the communication rate increases and matches background
noise, C drops with a sharp slope. We observe a peak channel
capacity of 10.5bps for a communication rate of around
32.0Hz, in this case.

For the single source case, the gap between the GFLOPS
levels of the sink (corresponding to logic 0 vs. logic 1)

is around 0.13%. To increase this gap and consequently,
increase the POWERT communication channel capacity, we
can increase the number of sources. Fig.s 11b and 11c
demonstrate channel capacity for two and three source
instances running on the little cores, respectively. We observe
that by increasing the number of source instances, POWERT
channel capacity increases notably.

For two sources (and a single sink), we observe a peak
channel capacity of 22.3bps at a communication frequency
of around 32.0Hz (Fig. 11b). For communication rates below
20Hz, the channel becomes almost noise-free (i.e., C ⇡ 1).
For three sources (and a single sink), on the other hand,
communication remains almost noise-free for communication
rates below 25Hz (Fig. 11c). In this case, the peak channel
capacity is around 47.5bps. The gap between GFLOPS levels
of the sink (when all sources are active vs. inactive) for the
two and three source cases are 0.25% and 0.49% respectively.
Unlike the first case study, we do not see throttling events,
as POWERT communication in this scenario affects only
the 4 little cores of the processor (out of 8). As result
the communication rate is significantly higher for a higher
number of source instances.

We also explore POWERT communication for multiple
sinks and a single source. In this case, the overall power
consumption is higher, but still, primarily the single source’s
activity modulates the power headroom of the sinks. We
observe that for two and three sinks the gap between the
GLOPS levels stays in the same range, 0.12% and 0.11%,
respectively. Peak channel capacity assumes a lower value
than the single sink case (10.5bps) for both – 7.2bps and
8.4bps, respectively – which indicates that multiple sinks do
not improve channel capacity.

Measurement-Based Characterization for Big-to-Big POW-

ERT Communication: We next analyze POWERT commu-
nication when both the sink and the source only use big cores.
Fig. 12 provides the characteristics for a single source and
a single sink. We observe that C remains close to zero for
almost any communication rate. In other words, POWERT
communication is not feasible. However, as we increase
the number of sources, we observe that C increases. We
observe the peak channel capacity of around 5.8bps at a
communication rate of near 48.5Hz, for three sources running
on big cores at the same time. Although the communication
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Figure 12: Channel characterization within big cluster.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

communication frequency (Hz)

C
: #

 b
its

 p
er

 c
ha

nn
el

 u
se

4 sources
3 sources
2 sources
1 source

(a) big-to-little

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

communication frequency (Hz)

C
: #

 b
its

 p
er

 c
ha

nn
el

 u
se

4 sources
3 sources
2 sources
1 source

(b) little-to-big

Figure 13: Inter-cluster channel characterization.

rate is still very low, this analysis provides proof of existence
of POWERT channels on big cores. We should also note that
the power virus at the source, cpuburn-a7, is optimized for
Cortex-A7 (little) cores, therefore, we expect a much higher
channel capacity in the big cluster for a properly tailored
power virus. Otherwise, as it was the case for the little cluster,
we do not observe practical benefits by increasing the number
of sink applications.
Measurement-Based Characterization for Big-to-Little &

Little-to-Big POWERT Communication: We next look into
inter-cluster POWERT communication, where the sink and
the source instances run on cores in different types of clusters
(i.e., big or little). First, we run source(s) on big cores, and
a sink on a little core. As Fig. 13a depicts, C increases
when we have multiple source instances running on the big
cores at the same time. We observe a peak channel capacity
of 5.5bps at a communication frequency of around 40.5Hz
when four source instances are running on all four big cores.
Fig. 13b provides the symmetric analysis for having different
number of sources running on little cores, and a sink on a
big core. Similar to the previous case, we observe that more
number of sources increases C. This renders a peak channel
capacity of 8.7bps for four sources at a communication rate
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Figure 14: 2-bit encoding on little cores.

of around 61.0Hz. While the channel capacity for this type
of inter-cluster POWERT communication is not as large as
the (intra-cluster) little-to-little communication, this analysis
indicates that inter-cluster channels exist, and hence need to
be considered when designing effective counter-measures.
Multi-level Encoding on Little Cores: We next characterize
POWERT communication for a more effective data encoding:
Using four (instead of two) distinct levels of source’s activity,
enabling us to send two bits of information per channel use,
instead of one (as we covered so far). While we do not
have full-fledged control over the activity level of the power
viruses (MPrime and cpuburn-a7, which form the workload
of the source), we can enforce different levels of activity by
changing the number of active sources. For example, to send
a binary value of “10”, we can activate two sources. In other
words, we can encode a two-bit value into the number of
active sources. This way, we can send more than one bit in
each channel use, which can improve channel capacity.

As a proof-of-concept, we apply this multi-level encoding
scheme to little cores, where we have observed the best
channel profile when using multiple sources for POWERT
communication (Fig. 11). As depicted in Fig. 14, we
observe a peak channel capacity (left y-axis) of 34.5bps
at a communication rate (x-axis) of around 43.0Hz in this
case. While at low frequencies we observe around 1.5bits sent
per channel use (right y-axis), C quickly goes down to near
zero (i.e., no information sent) at frequencies above 70Hz.
This is not unexpected as we have observed a similar trend
for only one or two sources running in Fig.s 11a and 11b,
respectively. Hence, we cannot reach a channel capacity as
high as the three sources case alone, as depicted in Fig. 11c.

VI. COUNTERMEASURES

A. Avoiding Power Budget Sharing

One way to avoid POWERT attacks is to assign a separate,
fixed and safe power budget to each entity and thereby to
exclude any power budget sharing. In this case, independent
local power management is necessary to keep power con-
sumption of each entity under its respective, constant power
budget. Let us assume that an individual power budget of
Ei applies per entity. By construction, Ei is lower than
the maximum possible consumption of each entity, Pi, asP

i
Ei  power budget must be the case. Consequently,

even if an entity is the only active entity in the system, it



will not be able to operate at a higher performance point
which would consume more power than Ei. This can lead
to significant performance loss and degrade overall power
efficiency.

To quantify the overhead of this countermeasure, i.e., the
performance loss caused by fixing (and thereby practically
decreasing) per-entity power budget, we run each power
virus on all cores of its respective platform and compare the
performance to when only one core is running the power virus.
When all cores are active, each core inevitably consumes less
power at the peak (corresponding to Ei), to meet the overall
system-wide power budget. On the other hand, when only
one core is active, the active core can run at maximum
performance, and consume by itself the entire effective
budget for all cores being active. We use the performance
difference under both scenarios as a quantitative estimate for
the overhead of this countermeasure. Overall, we observe a
performance degradation of over 30.1% for the Intel; and
7.8%, for the ARM framework. The degradation for the first
platform is more meaningful, as the corresponding power
virus is more effective in pushing the system to its limits. We
conclude by noting that this countermeasure incurs a high
performance penalty which may not always be acceptable.

B. Operating Frequency Randomization

As reported in Section V-A, the difference between the sinks’
GFLOPS levels for the first case study, when communicating
at the peak rate, is around 2.7%. The same gap between
GFLOPS levels is around 0.5%, for the fastest covert
communication on the second case study, as Section V-B
reveals. Hence, on both systems we observe a slim gap that
needs to be carefully sensed to be able to accurately decode
the leaked information.

Based on this observation, one way that PM can limit
the bandwidth for POWERT communication is by imposing
random noise on the GFLOPS signal, simply by adding
random noise to the operating frequency of each core. In
other words, when PM finds the optimal operating frequency
for a core based on power demand, workload behavior,
and other parameters, it can add random noise (e.g., in the
range of [-2,+2]%) to it before actually tuning the respective
core’s frequency. While this countermeasure would inevitably
degrade power-efficiency and performance, it can significantly
complicate the decoding process, potentially to a point where
covert communication becomes impossible.

Fig. 15 depicts how adding random uniform noise to
GFLOPS affects C, on both platforms in the attack scenario
where we observe the highest channel capacity. To limit
C to less than 0.1 bits per channel use, we have to add a
random uniform noise with the magnitude of [-25,+25]% of
the GFLOPS signal on the Intel platform. On the other hand,
this magnitude is around [-5,+5]% on the ARM platform,
since, as reported in Section V-B, the gap between GFLOPS
levels is smaller on the ARM platform.
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Figure 15: Impact of adding noise to GFLOPS signal on C.

C. Slowing Down Communication

Section III provides an analytical model to estimate an upper-
bound for POWERT communication rate, as a function of
different system parameters. We can utilize this model to
find ways to lower the upper-bound, to a desirable safe
level. For instance, one easy way to slow-down POWERT
communication is by increasing the decision-making period
of the power manager, tPM . While this, as well, degrades
overall power efficiency, it can effectively limit POWERT
communication rate, and thereby, the channel capacity. We
can manipulate other parameters, as well, all at the cost of
perturbing power management and consequently, degrading
overall power efficiency.

VII. RELATED WORK

Covert channels: Resource sharing, be it in hardware
or software, is inevitable for power or area efficiency,
however, almost exclusively brings up security concerns.
Since one of the first mentions of covert channel attacks
in 1973 [17], a variety of covert channels have been
revealed [18], [5], [19], [20], [4], [3], [21], [22], [23]. The
vast majority of these works covers cache-based covert
channels [3], [18]. Not only higher level caches, but also
the main memory and functional units shared by different
threads under simultaneous multithreading (SMT) can be
subject to information leakage through covert channels [17].
Recent work has also shown how thermal sensors (as a
key component of on-chip thermal management) can enable
similar covert communication [5]. Thermal effects can also
lead to clock skew changes, which attackers can exploit for
covert communication [19]. Covert channels which need
special privilege, for instance to access hardware monitors
like thermal sensors, can be blocked simply by restricting
access to those resources. This does not apply to POWERT



attacks, since no special privilege is needed to perform these
attacks. Other hardware resources such as the memory
bus [4], random number generator [20], magnetic field
sensors [22], USB charging cable [23], and general purpose
graphics processing units [21] are vulnerable, as well. The
condition that the sender and receiver need to reside at the
same place is necessary for covert communication in earlier
studies, while recent studies demonstrate that this requirement
can be relaxed if the timing of sender activities can be
measured remotely [17]. Similar to many of these covert
channels including cache-based covert channels, blocking
POWERT attacks inevitably degrades system performance
and power efficiency (as explained in Section VI). It becomes
even more challenging as power management is getting more
crucial in preserving power efficiency of even more power
limited platforms of the future.

On the modeling side, Hunger et al. proposed a simple
mathematical abstraction to capture common characteristics
of all microarchitectural channels [12]. While the model
is applicable to many contention-based microarchitectural
channels, it does not directly apply to POWERT channels.
This is because the model assumes that probing the channel
perturbs the data. However, in POWERT channels, multiple
receivers can listen to the covert channel, without affecting
the transmitted data itself, as shown in Section V.

Power management vulnerabilities: Power management
vulnerabilities can result in a variety of security issues.
For example, JayashankaraShridevi et al. analyze two types
of attacks enabled by hardware Trojans embedded in the
power management unit (PMU) of a mobile system on
chip [24]. The first attack leads to higher operating voltages
than necessary. The second one delays the activation of
power-gated blocks. In both cases, power efficiency degrades.
Tang et al. demonstrate another type of vulnerability due to
DVFS [25], where an attacker can enforce lower (higher) than
safe voltages (frequencies) to induce timing errors. Physical
access is not necessary, as software controls voltage regulators
and phase-locked loops (PLLs). The authors show how to
infer 128-bit AES keys via overclocking the processor. Zhang
et al. recently proposed a mitigation technique for such power-
management based fault injection attacks, by dynamically
“blacklisting” unsafe operating points [26]. The recently
revealed DVFS Channel [27] exploits the fact that a core’s
frequency can be dynamically controlled using DVFS (and
not that cores share the same power budget). This type of
attack is easier to block by limiting the access to the files
containing current frequency information, while POWERT
attacks do not need any privilege, making them harder to
block. Finally, due to low rate of updates to frequency
information files, DVFS Channel demonstrates much lower
bit rates, compared to POWERT. PMU Trojan [28] is similar
to DVFS Channel, but attacks happen in hardware. Contrary
to POWERT communication, PMU Trojan, as well, does
not exploit the fact that cores share the same power budget.
Similar to DVFS Channel, this attack also can be blocked

by limiting access to operating frequency information of
the cores, on the receiving side. Besides, POWERT attacks
do not rely on hardware Trojan, and can be performed on
regular PM hardware. The available instantaneous power
budget itself represents a shared resource, therefore, power
management practically entails finding the optimal allocation
of the power budget among active tasks of execution. To
the best of our knowledge, our study is the first to cover
covert channel communication enabled by power headroom
modulation, without the need for any sort of privileged access
to shared hardware or software resources.

VIII. CONCLUSION

As power-limited computing platforms of today are getting
more and more observable and controllable to facilitate
sophisticated power management operating at very fine
granularity in both space and time, a novel class of covert
communication by power headroom modulation becomes
possible. In this study, we characterize this novel class of
covert channels triggered by power management vulnerabil-
ities. Only the characterization of these vulnerabilities can
enforce security as a power management design parameter as
important as (or more important than) performance, power,
or accuracy.
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G. Venkataramani, “Dfs covert channels on multi-core plat-
forms,” in Very Large Scale Integration (VLSI-SoC), 2017
IFIP/IEEE International Conference on, pp. 1–6, IEEE, 2017.

[28] M. N. Islam and S. Kundu, “Pmu-trojan: on exploiting
power management side channel for information leakage,”
in Proceedings of the 23rd Asia and South Pacific Design
Automation Conference, pp. 709–714, IEEE Press, 2018.


