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Trading Computation for Communication:
A Taxonomy of Data Recomputation Techniques

Ismail Akturk, Ulya R. Karpuzcu

Abstract—A critical challenge for modern system design is meeting the overwhelming performance, storage, and communication
bandwidth demand of emerging applications within a tightly bound power budget. As both the time and power, hence the energy, spent
in data communication by far exceeds the energy spent in actual data generation (i.e., computation), (re)computing data can easily
become cheaper than storing and retrieving (pre)computed data. Therefore, trading computation for communication can improve
energy efficiency by minimizing the energy overhead incurred by data storage, retrieval, and communication. This paper provides a
taxonomy for the computation vs. communication trade-off accompanied by a quantitative characterization.

Index Terms—data recomputation; communication reduction; energy efficiency; amnesic execution; load value prediction.
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1 INTRODUCTION

ADDRESSING the energy problem of modern comput-
ing [1] is not possible without understanding where the

power goes. Figure 1 demonstrates a generic template for the
sequence of events accompanying each step of classic com-
puting: Upon retrieval of the input operands from the mem-
ory hierarchy (¬ & ­), compute resources (be it general-
purpose cores or specialized accelerators) derive the output
data from the inputs (®), followed by storage (¯ & °) and
retention (±) of the output data until the next update. Power
goes to all of these events. The building blocks of classic
processors, digital switches, consume dynamic power as
they toggle, and – being far from ideal due to aggressive
miniaturization – static power due to leakage when turned
off.
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Fig. 1: Classic execution at each step of computation.

Both the breakdown of total power consumption across
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events and the ratio of dynamic to static power per event
evolve as a function of the operating regime and technol-
ogy. Unfortunately, emerging technology solutions are not
mature enough to meet the growing performance, storage
capacity, and communication bandwidth demand within the
tightly bound power budget (mainly due to cooling and
power delivery limitations). At the same time, imbalances
between logic and memory technologies cause energy (time
× power) consumption of data loads and stores (¬, ­, ¯ and
°) to significantly exceed the energy consumption of actual
computation (®) [1], [2]. As a consequence, reproducing,
i.e., recomputing data can become more energy efficient than
storing and retrieving pre-computed data. This discrepancy
is expected to become even more prevalent with technology
scaling [3].
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Fig. 2: Classic execution vs. Recomputation

Figure 2(a) summarizes the classic trajectory at each step
of execution from Figure 1. Black arrows point to the di-
rection of data flow. Figure 2(b), on the other hand, captures
how the picture changes by adapting recomputation. The idea
is swapping the load from step ¬ for the reproduction of the
actual data values (which would otherwise be loaded from
memory). Recomputation can reproduce such data values
by brute-force recalculation [4]1, value prediction [5], [6], or
approximation [7], [8] – spanning a three-way taxonomy. ¬
incurs the time and power overhead of the memory access
to perform the load; ­ , of the subsequent communication of

1. While Amnesiac [4] refers to recomputation as recalculation, we use
recomputation in much broader sense in this paper: to refer to not only
recalculation, but also prediction and approximation.
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the respective data values, i.e., inputs to compute resources.
Recomputation transforms the overhead of ¬ & ­ to the
overhead of the reproduction of the respective data values,
which is similar to the overhead of ®. Therefore, recom-
putation can only improve energy efficiency if the cost of
data reproduction remains less than the overhead of ¬ &
­. In other words, the overhead of ¬ & ­ sets the bud-
get for recomputation. Under recomputation, the workload
becomes more compute-intensive to make a better use of
classic processors optimized for compute performance, as
opposed to energy efficiency.

We will next look closer into the 3-way taxonomy of data
recomputation techniques, accompanied by a quantitative
compare and contrast. In the following, Section 2 covers the
motivation; Section 3 introduces the taxonomy; Sections 4
and 5 provide the evaluation; Section 6 discusses related
work, and Section 7 summarizes our findings.

2 MOTIVATION

While emerging technology solutions alter the breakdown
of total energy among stages ¬ – ± per Figure 1, the share
of data communication and memory energy (i.e., ¬, ­, ¯, °,
±) is projected to be predominantly higher [2]. At the same
time, the inevitable quest for higher degrees of parallelism
hurts data locality, therefore, increases communication en-
ergy further [1], [2].

2.1 Impact of Operating Regime & Process Technology
variability. The total power consumption of the system is much 

lower, but substantial portion of the power will be in leakage.  

 
Figure 5: Subthreshold leakage power 

At low logic activity the active power is low and the leakage 

power dominates, reducing the effectiveness of NTV for energy 

efficiency. Therefore, fine grain leakage power management, with 

sleep transistors or power gating techniques will be even more 

important. 

3.3 SRAM and Register File 
Small signal arrays, such as static memory, are designed to 

operate in a narrow voltage range and need significant design 

considerations. 6T static memory cells are typically designed with 

small transistors for higher density, and thus have stability and 

yield issues at lower voltages. There are two potential solutions 

for static memory: (1) employ larger 6T memory cells, or 8T, 10T 

cells which can operate at lower voltages, all compromising area, 

and (2) do not operate static memory blocks at NTV. Since static 

memory energy consumption is relatively low in a system it may 

be a good compromise. 

  
Figure 6: NTV Tolerant Register File 

Register file circuits at NTV are limited by contention in 

read/write circuits due to parameter variation which becomes 

worse with technology scaling; minimum sized devices are worse 

in this respect. Also at lower voltages, increased write contention 

between strong PMOS pull-up and weak NMOS transfer devices 

across parameter variations could result in faulty behavior.  

The register file circuit can be made NTV friendly by replacing 

the conventional dual-ended write cell equipped with a 

transmission gate [6], as shown in Figure 6. Upsizing the NMOS 

transfer devices in a conventional dual-ended write cell improves 

write contention; however, higher threshold voltage in cross-

coupled inverter devices caused by parameter variation still 

increases write completion delay, limiting voltage scaling. By 

replacing NMOS transfer devices with full transmission gates 

improves both contention and voltage scaling because: (a) it 

provides two paths to write “1” or “0” to both node bit lines, 

averaging random variation across two transistors, (b) strong “1” 

and “0” writes on both sides, and (c) cell symmetry (NMOS and 

PMOS) reduces the effect of systematic variation. 

3.4 Latches, Flip-Flops, Multiplexers, Gates 

 

Figure 7: NTV friendly flip-flop design 
The storage nodes in latches and flip-flops have weak keepers and 

large transmission gates. When the transmission gate for the slave 

stage of a conventional master-slave flip-flop circuit is turned off, 

the weak on-current from the slave-keeper contends with the large 

off-current through the transmission gate. This causes the node 

voltage to drop, affecting the stability of the storage node. Low 

voltage reliability of the flip-flops can be improved by the use of 

non-minimum channel length devices in the transmission gates to 

reduce off-currents, and with upsized keepers to improve on-

currents to restore charge lost due to leakage. The write operation 

remains unaffected since the keepers are interruptible. The circuit 

modifications shown in Figure 7 reduce the worst-case droop by 

4X in the ultra-low voltage optimized design. 

To tolerate effects of variations at low voltages, averaging 

technique can be employed, as shown in Figure 8, described in 

[4]. Vector flip-flops across two adjacent cells with shared local 

minimum sized clock inverters to average variation, reducing low 

voltage hold time violations and improving minimum supply 

voltage by 175mV. The stacked min-delay buffers also limit 

variation-induced transistor speed up, improving hold time margin 

at low voltage by 7%-30%. 
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Fig. 3: Evolution of share of static power [9].

A promising way to boost energy efficiency is reducing the
operating voltage, V dd, aggressively to reach the switching
threshold [10]. As V dd decreases, both dynamic and static
power reduce, however, not at the same pace: Static power
reduces less, and the share of static power grows. Figure 3
depicts how the share of static power (y-axis) evolves with
technology scaling (x-axis). Each trend-line corresponds to a
different V dd. For each technology generation, the share of
static power is optimized not to exceed 20% under nominal
conditions, when operating at nominal V dd, V ddNOM . For
each technology generation, as V dd decreases from its nom-
inal value V ddNOM by 0.75×, 0.5×, and 0.4×, the share
of static power quickly increases. For example, at 22nm,
as V ddNOM decreases by 0.4×, the share of static power
approaches 50%. Aggravated by shrinking feature sizes,
variability in design parameters intensifies this effect: Due
to variability, for any given V dd, the share of static power
tends to increase over technology generations. On the other
hand, the impact of variability increases with decreasing
V dd.

As V dd decreases, the total power consumption reduces,
however, a progressively increasing fraction of this reduced
consumption goes to static power. Thus, static-power-heavy
stages (mainly ±) become relatively more power hungry
than dynamic-power-heavy phases (mainly ®). Emerging
non-volatile memory technologies such as PCM [11], [12]
or STT-RAM [13], [14] can minimize data retention (±)
power due to practically zero static power, but suffer from
excessive write (°) energy [15]. Recomputation can still be
beneficial in this case, since recomputation can help reduce
all components of data communication and memory energy
(i.e., ¬, ­, ¯, °, ±), including writes and data retention.

While energy efficiency assumes its maximum in the
vicinity of approximately 0.4× or 0.5× V ddNOM [15], op-
eration at such ultra-low V dd can easily hurt data locality.
This is because only increasing concurrency can prevent per-
formance degradation due to the sizable drop in operating
speed (frequency) at low V dd [10]. As a result, each core
tends to spend both more time and power, therefore more
energy, in data communication (i.e., ­, ¯). Figure 3 does
not consider this effect, which we will look closer into in
Section 2.2.

3D stacking [16] or emerging photonics based intercon-
nects [17] can render a lower data communication energy
when compared to the state of the art, but would not alter
the communication-centric nature of parallel processing: Or-
thogonal to the technology of the communication medium,
higher levels of concurrency tend to hurt data locality, hence
reduce the mean time to data communication. Accordingly,
data communication is expected to remain as one of the
most energy-hungry stages.

2.2 Concurrency vs. Data Locality

In a classic processor, cores communicate over the shared
memory. Therefore, core-to-core communication translates
into a sequence of core-to-memory (¯ in Figure 1) and
memory-to-core (­ in Figure 1) communication. The mag-
nitude and the frequency of data exchange depends on the
data distribution among the cores.

With increasing number of cores, the problem can dis-
tribute data to cores following strong or weak [18] scaling.
Under both scaling paradigms, n× more cores increase
the throughput performance by n× in the best case, if we
exclude the overhead of communication. Table 1 captures
how the total and per core problem size PS, execution time t,
and throughput performance PS/t evolve for an n-fold increase
in core count.

TABLE 1: Strong vs. weak scaling for an n-fold increase
in core count. Best case scenario, excluding communication
overhead. PS: problem size.

(Total) PS per time PS share
Scaling PS core (t) PS/t (per core)
Strong const. /n /n ×n /n
Weak ×n const. const. ×n /n

Under strong (weak) scaling, overall PS remains constant
(increases by n×), hence, PS per core decreases by n× (re-
mains constant). t is proportional to PS per core. As a result,
PS/t increases by n×. At the same time, PS share per core
decreases, as tabulated in the last column, which represents
the ratio of PS per core (column 3) over the total PS (column
2).
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PS share serves as a proxy for data locality. This is
because the total PS governs the total amount of data to
be processed. Accordingly, PS share reflects the fraction
of data processed by each core, which has to reside in
close physical proximity to the core. Independent of the
scaling paradigm, higher n – higher degrees of parallelism
– tends to hurt data locality, hence, increase the likelihood
of core-to-core communication. Factoring in the resulting
data exchange overhead can easily wipe out the n-fold
performance improvement. Indeed, time and power spent
in data movement and the orchestration thereof is expected
to dominate time and power spent in computation [1], [2].

3 RECOMPUTATION TAXONOMY

The energy overhead of the load from Figure 2(a) deter-
mines the energy budget for recomputation. Unless the
energy cost of reproducing data remains less than the energy
cost of the respective load, recomputation cannot improve
energy efficiency. Therefore, whether recomputation can im-
prove energy efficiency or not tightly depends on where the
data reside in the memory hierarchy – it is the location of the
data in the memory hierarchy which determines the energy
cost of the load. On the other hand, recomputation also
incurs an energy cost due to the introduction of recomputing
instructions to reproduce the respective data values.

Recomputation can reproduce such data values by brute-
force recalculation [4], value prediction [5], [6], or approxi-
mation [7], [8], which gives rise to a 3-way taxonomy:
• Under brute-force recalculation, the recomputation effort

goes to the derivation of data values, by re-executing the
producer instructions (of the data values, which would
otherwise be loaded from memory).

• Under prediction, the recomputation effort goes to the
estimation of data values by exploiting value locality – the
likelihood of the recurrence of data values [6] within the
course of execution.

• Under approximation, the recomputation effort goes to
the reproduction of the data values, however, at reduced
accuracy. Generally, these techniques come in two flavors:
(i) approximate recalculation, and (ii) approximate pre-
diction. In (i), the recomputation effort goes to the actual
calculation of data values – as it is the case for brute-force
recalculation, however, at reduced accuracy. In this case, the
compute resources may only partially execute the producer
instructions (e.g., by dropping a subset), or perform recom-
putation at reduced precision. In (ii), the recomputation
effort goes to to the estimation of data values by exploiting
value locality – as it is the case for prediction, however,
approximately.

Be it recalculation or prediction based, depending on the
accuracy of approximate reproduction of the data values,
approximation may degrade the accuracy of the end re-
sults. In this study we evaluate recomputation techniques
at iso-accuracy, moreover, without comprimising accuracy.
Hence, our analysis spans (full-accuracy) recalculation and
prediction, and leaves approximation based recomputation
to future work.

3.1 Recalculation Based Recomputation
Recalculation can be implemented in various ways. In the
following, we will use a compiler-based proof-of-concept
implementation similar to [4]: During code generation, the
compiler replaces each energy-hungry load instruction with

the sequence of (arithmetic/logic) producer instructions of
the respective data values. To this end, the compiler recur-
sively traces data dependencies. The sequence of producer
instructions forms a backward slice, as depicted in Figure 4,
which we will refer to as a Recalculation Slice or RSlice.
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Fig. 4: Example Recalculation Slice (RSlice)

Figure 4 demonstrates an example RSlice. Each RSlice
is an upside-down tree, with nodes representing producer
instructions to be re-executed. Data flows from the leaves to
the root. The node at the root corresponds to the immedi-
ate producer of the data value which would otherwise be
loaded from memory. Nodes at level 1 correspond to the
producers of the root. Nodes at level l correspond to the
producers of nodes at level l-1. The number of incoming
arrows at each node reflects the number of producers (of
the node) to be re-executed. The leaf nodes either represent
terminal instructions which do not have any producers, or
instructions for which re-execution of their producers is not
energy efficient. In the proof-of-concept implementation, the
compiler is in charge of making sure that all input operands
of producer instructions within an RSlice are available at the
anticipated time of recalculation. Unless the compiler guar-
antees this constraint, an RSlice cannot replace its respective
load in the binary.

The compiler swaps a load with its respective RSlice only
if recalculation of the corresponding data value along the
RSlice is more energy efficient than performing the load. To
cross-validate the accuracy of the proof-of-concept optimiz-
ing compiler pass adapted from [4], we implement an Inte-
ger Linear Programming (ILP) based mathematical formula-
tion (provided in the Appendix), which solves recalculation-
enabled energy minimization as an optimization problem.
We use Basic Block (BB) as the recalculation granularity
(instead of an instruction) for the ILP formulation. A BB
represents a super-instruction with a bounded number of
input and output values. A BB cannot incorporate a branch
or jump, by definition. For the ILP formulation, a finer
granularity (i.e., instruction) incurs a higher overhead for
dependency tracking from the computational complexity
point of view. On the other hand, a coarser granularity
increases the recalculation cost (due to a higher number
of instructions to be reexecuted per eliminated load) and
yields a more pessimistic solution. Basic block granularity
provides a sweet spot in terms of computational complexity
and accuracy for the ILP formulation. This ILP formulation
suits itself well to compiler integration, as well.

3.2 Prediction Based Recomputation
Under prediction, the recomputation effort goes to the esti-
mation of data values, instead of brute-force recalculation.
Accurate estimation is only possible if data values (which
otherwise would be loaded from memory) exhibit high
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TABLE 2: Benchmarks deployed

Suite Benchmark Input Description
SPEC 429.mcf (mcf) test Combinatorial Optimization
SPEC 482.sphinx3 (sx) test Speech Recognition
NAS is A Integer Sorting
PARSEC canneal (ca) simsmall Routing Cost Minimization
PARSEC facesim (fs) simsmall Motion Simulation
PARSEC ferret (fe) simsmall Content Similarity Search
PARSEC raytrace (rt) simsmall Real-time Raytracing
Rodinia backpropagation (bp) 65536 Pattern Recognition
Rodinia breath-first search (bfs) graph1MW 6.txt Graph Traversal
Rodinia srad (sr) 100 0.5 502 458 1 Image Processing

value locality – i.e., a high likelihood of recurrence [6] within
the course of execution. For example, if a data value exhibits
excellent (100%) locality, just storing the value in a dedicated
buffer and retrieving it from there may turn out to be more
energy efficient than recalculating it (Section 3.1) or loading
it from memory. Even if the value locality remains less than
100%, such buffered history of values can be used for pre-
diction. Recent work has shown that emerging applications
can oftentimes mask prediction incurred inaccuracy due to
potential errors in estimation, as implied by the imperfect
value locality [6].

Value retrieval from the history buffer constitutes the
main cost of prediction. Under imperfect value locality, a
prediction algorithm can help estimate the respective value
by using the buffered history of previously observed values.
In this case, the cost of executing the prediction algorithm
should also be considered. Approximation aside, classic
load value prediction features a repair mechanism to restore
data values in case of a misprediction, as well. The overall
cost of prediction including repair should fit into the recom-
putation budget, which in turn is set by the energy overhead
of the respective load. Prediction based recomputation can
only be beneficial if its energy cost remains less than the
energy overhead of this load.

3.3 Recalculation + Prediction

Prediction based recomputation (Section 3.2) exploits lo-
cality of data values which would otherwise be loaded
from memory. With respect to recalculation (Section 3.1),
prediction targets the value to be produced by the root
node of the RSlice. Input values of RSlice nodes may also
exhibit significant value locality. Let us assume that such
a node n resides at level l, and it is not a leaf. In this
case, predicting n’s inputs may turn out to be more energy
efficient than re-executing n’s producers residing at level l+1
of the RSlice. Hence, combining recalculation with predic-
tion (i.e., recalculation + prediction) can result in pruned
RSlices to harvest even more energy efficiency. Recall that,
if retrieving input data of leaves requires energy-hungry
memory accesses, recalculation along the RSlice cannot be
of any use. Each intermediate node of the RSlice subject to
prediction becomes practically a leaf, as re-execution past
such nodes would no longer be necessary.

Recalculation + prediction can prune RSlices, however,
even under pure recalculation (Section 3.1), RSlices can
never grow excessively: the energy overhead of the respec-
tive load determines the budget for recomputation. The
cost of recalculation increases with the number of levels,
i.e., height of the RSlice, and the number of nodes residing
at each level. The re-execution of each node instruction
incurs an energy cost. At most, as many nodes can be re-
executed (i.e., can reside in the RSlice) as can be fit into the

recomputation budget. And recalculation can only improve
energy efficiency if the cost of re-execution along the RSlice
remains less than the recomputation budget, which is set by
the energy overhead of the respective load. In this manner,
the energy overhead of the load prevents excessive growth
of the RSlice. Under recalculation + prediction, the cost of
re-execution along the RSlice along with the cost of selective
prediction constitute the cumulative cost of recomputation.

4 EVALUATION SETUP

We experiment with benchmarks from the SPEC2006 [19],
PARSEC [20], NAS [21], and Rodinia [22] suites, which span
emerging application domains (Table 2). In the evaluation,
we only analyze the benchmarks which harvest sizable
energy efficiency gain under recomputation. The analyzed
mix contains both compute- and memory-intensive sequen-
tial or single-threaded applications. We use Sniper [23] for
microarchitectural simulation. The simulated microarchitec-
ture is modeled after an in-order single-core Intel Xeon Phi-
like processor without loss of generality, which features an
operating frequency of 1.09GHz at 22nm, an L1 instruction
cache of 32KB (4-way, LRU), an L1 data cache of 32KB (8-
way, LRU, WB), and an L2 cache of 512KB (8-way, LRU,
WB).

We profile the native binaries (conforming to classic ex-
ecution, hence excluding recomputation) of the benchmarks
on Sniper: We record (i) value locality of instructions at run-
time (to be exploited by prediction based recomputation);
(ii) cache statistics, i.e., hit and miss rates, at runtime (to
derive the probabilistic energy cost model of the compiler
pass).

The energy per instruction (EPI) estimates per load,
store, and non-memory instructions come from measured
Xeon Phi data from [24], which for memory instructions,
provides separate EPI estimates for each level Li in the mem-
ory hierarchy: EPILi. Using these EPILi and cache statistics
from Sniper, we extract probabilistic EPI estimates for loads
as follows: We derive PrLi, the probability of having the
load serviced by level Li, using hit and miss statistics of Li
from Sniper. Then, the sum of PrLi× EPILi over all levels
i in the memory hierarchy gives the probabilistic energy
cost per load. Using this energy cost per load, and the EPIs
for non-memory instructions, the compiler pass swaps a
load with its respective RSlice only if recalculation of the
corresponding data value along the RSlice incurs a lower
energy cost than performing the load.

We implement the compiler pass from Section 3.1 in a
Pin [25] based tool, which (by using the probabilistic energy
cost model detailed above and by tracking data dependen-
cies) swaps load instructions in the binary for the respective
RSlices, only if recomputation incurs a lower energy con-
sumption. At the same time, this tool adjusts the binary
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Fig. 5: Energy gain under recomputation.

under prediction and recalculation+prediction following
Sections 3.2 and 3.3. To identify its maximum potential, we
restrict prediction with the prediction of the values which
would otherwise be loaded (i.e., be produced by RSlice roots
under recalculation). Under recalculation+prediction, on
the other hand, prediction can target any RSlice instruction
but the root. We deploy Sniper integrated with McPAT [26]
to run these annotated binaries in order to collect perfor-
mance and energy statistics under recomputation.

5 EVALUATION

We next quantify the energy efficiency under recomputation
and analyze the implications for execution semantics.

5.1 Impact on Energy and Performance
Figure 5 compares the energy consumption under recal-
culation, prediction, and recalculation+prediction based
recomputation. This analysis accounts for the overhead of
recomputing producer instructions (along RSlices) under
recalculation (Section 3.1), and history buffer accesses under
prediction (Section 3.2). However, we assume that one
history buffer access suffices for value prediction at 100%
accuracy (i.e., we omit any potential overhead due to predic-
tion algorithms or potential repair). For this experiment, we
set the value locality threshold to enable prediction to 90%:
prediction only applies to instructions which exhibit at least
90% value locality. Prediction targets only the values to be
reproduced by root instructions of RSlices (all instructions
along which are re-executed under recalculation). Under
recalculation+prediction, on the other hand, prediction can
target any RSlice instruction but the root (Section 3.3).

Figure 5 reports the energy gain with respect to native
execution, which excludes recomputation. We observe that
except bp, bfs and sr, the energy gain under prediction
is insignificant. This is because only a small of number
of instructions exhibit a higher value locality than 90%.
Due to its wider applicability, recalculation unlocks higher
energy gains, ranging from 5.06% to 67.43%, except sr. The
recalculation cost for sr remains generally higher than the
cost of the respective loads. An interesting observation is
that bfs obtains lower energy gain under prediction and
recalculation+prediction when compared to recalculation
alone. The reason is that the RSlices of bfs are very short,
rendering recalculation always cheaper than prediction. At
the same time, our proof-of-concept implementation gives
the priority to prediction if a value exceeds the locality
threshold set for prediction (i.e., 90%) under recalcula-
tion+prediction: in other words, we omit recalculation for
all values that exhibit a higher value locality than the
threshold (90% in this case), even though recalculation turns
out to be less energy hungry than the respective load.
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Fig. 6: Performance improvement under recomputation.
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Therefore, the energy gain under recalculation+prediction
cannot exceed the gain under recalculation for bfs. Overall,
the energy gain due to recalculation+prediction remains
limited for the majority of the benchmarks. The reason is
twofold: the benchmarks either do not have enough value
locality to exploit prediction (e.g. mcf, sx, is, ca, fs, fe, and rt),
or recalculation is too costly (e.g. sr).

Figure 6 reports the corresponding improvement in
performance (i.e., execution time) with respect to native
execution. Generally, a similar trend to energy gain applies,
except that the performance gain under recalculation for sr
becomes more pronounced when compared to the energy
gain.
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Fig. 10: Value locality of RSlice instructions.

Figure 7 summarizes the resulting gain in energy effi-
ciency in terms of EDP (energy-delay product [27]), with re-
spect to native execution. Overall, recalculation+prediction
maximizes the EDP gain, and recalculation remains effec-
tive as well, except sr (as explained above). Prediction is
beneficial for bp, bfs, and sr only – recall that even this gain
under prediction is optimistic as we neglect any algorithmic
or potential repair incurred overhead. Finally, recalcula-
tion+prediction results in 11.8% to 92.2% EDP gain across
all benchmarks.

We next assess the sensitivity of EDP gain to the value lo-
cality threshold for prediction. Figure 8 reports the EDP gain
under prediction; Figure 9, under recalculation+prediction,
as we sweep the threshold between 50% and 100%. Each bar
per benchmark represents a different value locality thresh-
old from this range to enable prediction. Generally, as the
threshold increases, the number of values exhibiting at least
that much locality reduces – therefore, a lower number of
predictions can be performed, and both the energy and per-
formance gains drop accordingly. Among the benchmarks,

bp exhibits the highest value locality, hence, it benefits most
from prediction. bfs and sr, as well, benefit from prediction
if the threshold remains lower than 100% – as very small
number of loads swapped for RSlices feature 100% value
locality for these benchmarks. On the other hand, fs and
mcf harvest sizable EDP gain under prediction only if the
threshold remains lower than 90% and 80%, respectively.
The remaining benchmarks have a very small number of
load instructions that exhibit ≥ 50% value locality, so only
a negligible EDP gain applies under prediction (which
already represents an upper limit for actual gains, as we
neglect any algorithmic or repair related overhead). There-
fore, recalculation+prediction can generally provide higher
EDP gains when compared to prediction. As mentioned
before, bfs has small RSlices, thus, the associated recalcula-
tion cost usually remains lower than the cost of prediction.
Accordingly, bfs shows higher EDP gain for 100% threshold
(at which a smaller number of values can be predicted, by
definition, when compared to lower values of the threshold)
under recalculation+prediction. Overall, we observe that
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our findings from Figure 7 generally apply over this wider
range of threshold values. We can conclude that recalculation
has wider coverage for recomputation than prediction. Next, we
investigate why this is the case.

5.2 Impact on Execution Semantics
As explained in Sections 3.2 and 3.3, in the context of
recomputation, prediction serves two purposes:
(i) to predict the values which would otherwise be loaded
from memory (and which correspond to the values to be
reproduced by RSlice roots under pure recalculation) under
prediction;
(ii) to predict the input values of intermediate (non-root)
RSlice nodes under recalculation+prediction.

Prediction can eliminate re-execution along an entire
RSlice if the values to be reproduced by the RSlice root (i.e.,
the values which would otherwise be loaded from memory)
exhibit sufficiently high locality. Recalculation+prediction,
on the other hand, can prune any intermediate RSlice node
(except the root) exhibiting sufficient (input) value locality
to render a smaller RSlice, which in turn becomes less
energy costly to execute.

For prediction based recomputation to work, the re-
spective instructions should exhibit sufficiently high value
locality. Figure 10 reports a histogram of % value locality
(x-axis) for all instructions residing in RSlices. The y-axis
reports the % share of instructions exhibiting a given value
of locality on the x-axis. Root captures the output value
locality of RSlice roots; Non-root, the input value locality of
intermediate (non-root) RSlice nodes. Recall that the output
value locality of RSlice roots corresponds to the value local-
ity of the respective load instructions which are replaced by
RSlices.

Notice the distinction between static and dynamic in-
structions (for both root and non-root, i.e., intermediate
instructions). Static instructions are the ones that are em-
bedded in the binary by the compiler. Dynamic instructions
are the ones that are actually executed at runtime. A static
instruction may have multiple dynamic instances executed
at runtime, or may not be executed at all. This distinction
helps us to explain why, for instance, we do not obtain much
benefit from prediction although a great fraction of static in-
structions have high value locality for is (Figure 10c): 38.46%
of (static) root instructions of is have 100% value locality,
but is does not benefit much from prediction (Figure 8).
This is because, at runtime, the root instructions having
100% value locality are not executed as many times as other
root instructions that have lower value locality. In fact, less
than 1% of dynamic root instructions executed have 100%
value locality for is, as shown in Figure 10c. The previous
section revealed that bp benefits from prediction the most
(Figure 8). Therefore, we expect a larger fraction of roots to
have very high value locality for this benchmark. Figure 10h
reveals that 20% of dynamic root instructions of bp have
100% value locality indeed. A similar trend holds for non-
root instructions under recalculation+prediction. For recal-
culation+prediction, prediction of non-root instructions can
provide sizable gains only if the dynamic share of non-root
instructions exhibiting high value locality is large.

Figure 11 shows how the node count of RSlices change
as the locality threshold to enable prediction increases from
50% to 100% under recalculation+prediction – none reflects
no prediction, i.e., pure recalculation. The figure reports
a histogram of node count of RSlice (x-axis). The y-axis
reports the % share of RSlices having a given node count

on the x-axis. A lower threshold enables more predictions,
hence more producer instructions can get pruned, and the
node count shrinks more. We observe that prediction at a
value locality threshold of 50% can reduce the node count
of RSlices up to 56%.

6 RELATED WORK

Kandemir et al. proposed recalculation to reduce off-chip
memory area in embedded processors [28]. Koc et al. inves-
tigated how the recalculation of data residing in memory
banks in low-power states can reduce the energy consump-
tion by preventing frequent switching of the corresponding
banks to high-power states for data retrieval [29]. Koc et
al. further devised recalculation-aware compiler optimiza-
tions for scratchpad memories [30]. The compiler strategies
from [29] and [30] are confined to array variables. Amne-
siac [4], on the other hand, replaces energy-hungry loads
with a sequence of low-energy arithmetic/logic instructions
to recalculate the respective data values, i.e., values which
would otherwise be loaded from memory. The goal is saving
energy. Amnesiac is not limited to embedded processors or
specific data structures. Therefore we use a similar tech-
nique to Amnesiac as a more generic representative for
brute-force recalculation throughout this paper.

Processing in/near memory (PIM/PNM) [31], [32], [33],
[34], [35] can bridge the gap between logic and memory
speeds by embedding compute capability in/near memory.
Processing in memory can minimize energy-hungry data
transfers, as well, and is orthogonal to recomputation. Mem-
oization [14], [36] – the dual of recomputation – replaces
(mainly frequent and expensive) computation with table
look-ups for pre-computed data. Similar to processing in
memory and recomputation, memoization can mitigate the
communication overhead (as long as table look-ups remain
cheaper than long-distance data retrieval). Memoization
and recomputation can complement each other in boost-
ing energy efficiency. Similar to memoization, computation
reuse [37], [38], [39], [40] tries to reduce the amount of com-
putation to be performed. The idea of computation reuse
is based on the observation that data-intensive applications
are run over again and again with either identical or very
similar inputs. In such cases, there is a considerable redun-
dant computation (as the input remains almost the same
with the previous input), and computation is needed only
for the inputs that are changed (which are very limited).
Although the main motivation behind computation reuse is
to boost performance, it can also improve energy-efficiency
as long as the input similarity check and copying the pre-
viously computed result remain cheaper than computing
the result from scratch. Compared to computation reuse,
recomputation is suitable for wider range of applications
since it does not rely on input similarity (i.e., recomputation
can be used in applications that exhibit no input similarity,
as well).

The inefficiency of traditional CPU-centric processing
motivated similar a body of work for large-scale data analyt-
ics, as well: near-data processing/in-situ analysis strategies
that take computation to the storage (rather than data to
the processor). These approaches can minimize larger scale
energy-hungry data transfers and, being of the same spirit
as PIM/PNM solutions, are orthogonal to recomputation.
For example, for data sets that cannot fit into main mem-
ory, Cho et al. [41] proposed an active SSD architecture
which supports basic data processing functions (such as
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Fig. 11: Node count of RSlices before (recalculation) and after pruning (recalculation+prediction).

filtering and aggregation) that can be performed directly on
flash memory controllers, relying on the high SSD-internal
bandwidth and the embedded CPU in the SSD controller to
avoid costly data transfers. Tiwari et al., on the other hand,
exploited the idle cycles of the SSD controller to process
SSD-resident data [42]. Compared to Cho et al. [41], their
approach does not require any hardware changes to the
SSD controller. Gu et al. took the idea of SSD-based near-
data processing further and provided a user-programmable
framework that features high-level language support, dy-
namic load balancing, and multi-core support [43].

7 CONCLUSION
Recomputation can minimize, if not eliminate, the prevalent
power and performance (hence, energy) overhead incurred
by data storage, retrieval, and communication, thus, render
more energy efficient execution. This paper provided a
quantitative proof-of-concept analysis for the computation
vs. communication trade-off, along with a taxonomy. Re-
computation replaces data load(s) from memory with the

reproduction of the respective data. Unless the energy cost
of reproducing data remains less than the energy cost of
retrieving it from memory, recomputation cannot improve
energy efficiency.

In this study, we explored (interactions between) two
broad classes of recomputation techniques: brute-force re-
calculation and prediction. Under recalculation, the re-
computation effort goes to the derivation of the data val-
ues (which would otherwise be loaded from memory), by
re-executing the producer instruction(s) of the eliminated
load(s). Under prediction, the recomputation effort goes to
the estimation of the data values by exploiting value locality
– the likelihood of the recurrence of values (which would
otherwise be loaded from memory) within the course of
execution. We find that recalculation has wider coverage for
recomputation than prediction, mainly because prediction
cannot be effective under limited value locality as opposed
to recalculation.
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APPENDIX

Mathematical Formulation

We adopt an integer linear programming (ILP) based formu-
lation for energy minimization under brute-force recalcula-
tion. Table 3 lists input and output parameters along with
the objective.

Optimizer In-
puts

Erd (average) energy per memory read
Ewr (average) energy per memory write
Einst (average) energy per non-memory instruction
BBi basic block i in dynamic control flow
#rd,i number of memory read instructions in BBi
#wr,i number of memory write instructions in BBi
#inst,i number of non-memory instructions in BBi
#consumer,i total number of consumers of BBi
#producer,i total number of immediate producers of BBi
#BB number of basic blocks in dynamic control flow

Objective Ei (minimize) total energy to execute BBi

Optimizer
Outputs

RDi =

{
1, if BBi reads from memory
0, otherwise

WRi =

{
1, if BBi writes to memory
0, otherwise

Ci =

{
1, if BBi is computed
0, otherwise

RCi =

{
1, if BBi is recomputed
0, otherwise

TABLE 3: The lingua franca for ILP-based formulation.

Objective: The energy Ei consumed to execute the basic
block (BB) i from the dynamic control flow, BBi can be
formulated as

Ei = Enon-memory instructions + Ewrites + Ereads
Enon-memory instructions = Ci × (Einst ×#inst,i)
Ewrites = WRi × (Ewr ×#wr,i)
Ereads = RDi × (Erd ×#rd,i)

which represents a running sum of products of energy per in-
struction, EPI, and number of instructions in the basic block. A
different EPI applies for non-memory (e.g. arithmetic), read
(load), and write (store) instructions. Indicator variables C,
RD, and WR capture whether the BB is computed, reads
from the memory, or writes to the memory, respectively.
As the optimizer works at BB granularity, RD and WR
apply to all reads and writes within the BB. BBi may be
subject to recomputation, possibly multiple times. Under
recomputation, Ei evolves to

Ei = Enon-memory instr. +Ewrites +Ereads +Erecomputations
Enon-memory instructions = Ci × (Einst ×#inst,i)
Ewrites = WRi × (Ewr ×#wr,i)

Ereads =
∑#consumer,i

k=1 RDi,k × (Erd ×#rd,i)

Erecomputations =
∑#consumer,i

k=1 RCi,k×(Einst×#inst,i)
When compared to the previous formulation, recomputa-
tion not only incurs the additional energy Erecomputations, but
also changes the read energy Ereads. This is because, to be
able to recompute BBi, we need BBi’s inputs. BBi may
need to read inputs from memory, or have them recomputed
by its producers. #consumer,i denotes total number of con-
sumers of BBi. Theoretically, BBi can be recomputed as
many times as its number of consumers (if each consumer
demands input recomputation). Accordingly, decision vari-
ables RCi (which indicates whether a consumer of BBi

demanded BBi’s recomputation) and RDi (which indicates
whether BBi is reading from memory in preparation to
be recomputed per one of its consumer’s request) occur
#consumer,i times in the energy calculation. The energy
consumption of the entire execution can be derived from
the energy cost of component basic blocks from

E =
∑#BB

i=1 Ei

where #BB is the number of basic blocks in the dynamic

control flow of the program, and Ei denotes the energy
consumed to execute the (dynamic) basic block BBi.
Constraints: The optimizer minimizes E(nergy) subject to
the following constraints: The first constraint states that
each basic block from the dynamic control flow must be
computed at least once

Ci = 1, for i = 1, 2, ...#BB

The next set of constraints stem from dependencies between
dynamic basic blocks. If BBi is computed (i.e., Ci = 1),
BBi may have either read its inputs from memory (i.e.,
RDi = 1), or demanded recomputation of its inputs by its
immediate producers (i.e., for each immediate producer BBp

of BBi, RCp = 1). Accordingly,
Ci − (RDi,p +RCp) = 0

applies, where p = 1, 2, ...,#producer,i points to the pth

immediate producer of BBi. RDi,p indicates that BBi read
data produced by its pth immediate producer from memory.
RCp indicates that BBi got its input by having its pth

immediate producer recomputed. BBi’s immediate pro-
ducers have immediate producers themselves. These non-
immediate producers of BBi may get transitively recom-
puted to generate BBi’s inputs, as BBi’s immediate pro-
ducers are recomputed. The recomputation of BBi’s non-
immediate producers gives rise to a further set of constraints
in a recursive fashion. For each immediate producer BBp of
BBi

RCp − (RDp,pp +RCpp) = 0
applies, where pp = 1, 2, ...,#producer,p points to the ppth

immediate producer of BBp. Finally, a basic block should
not be recomputed, if all of its consumers read their input
data from memory. In other words, the basic block can be
recomputed only if at least one of its consumers does not
read the input data from memory:

RDi,p +RCp <= 1
for all immediate producers BBp of BBi.
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