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Abstract
Due to imbalances in technology scaling, the energy con-
sumption of data storage and communication by far exceeds
the energy consumption of actual data production, i.e., com-
putation. As a consequence, recomputing data can become
more energy-efficient than storing and retrieving precom-
puted data. At the same time, recomputation can relax the
pressure on the memory hierarchy and the communication
bandwidth. This study hence assesses the energy efficiency
prospects of trading computation for communication. We
introduce an illustrative proof-of-concept design, identify
practical limitations, and provide design guidelines.

1. Motivation
Technology scaling and innovative architecture-level solu-
tions to date have improved the energy efficiency of data
generation, i.e., computation, significantly more than the en-
ergy efficiency of data communication [3, 14]. As a result,
both, time and power spent in communication highly exceed
the time and power spent in computation. Table 1, adapted
from [18], compares the energy (time × power) consump-
tion of an 64-bit load from on-chip SRAM (as a proxy for
communication) and of a double-precision fused-multiply-
add, FMA (as a proxy for computation), over two technol-
ogy generations: 40nm and 10nm optimized for high perfor-
mance (HP), and low power (LP), respectively. The commu-
nication energy increases from 1.55× computation energy
at 40nm to approximately 6× at 10nm. Worse, off-chip com-
munication to main memory requires more than 50× compu-
tation energy even at 40nm [18]. Off-chip memory accesses
become more critical as data sets of emerging application
domains keep growing.

As a consequence, recomputing data can become more
energy-efficient than storing and retrieving precomputed
data. In this paper, we hence investigate the effectiveness
of recomputing data values in minimizing, if not eliminat-
ing, the overhead of expensive off-chip memory accesses.
The idea is replacing a load with a sequence of instructions
to recompute the respective data value, only if it is more
energy-efficient. We call the resulting execution model am-
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Technology Node 40nm 10nm
Operating Voltage 0.9V 0.75V (HP) 0.65V (LP)

Energy of 64-bit SRAM load
(normalized to 64-bit FMA) 1.55 5.75 5.77

Table 1: Communication vs. computation energy [18].

nesic1 to contrast recomputation with conventional, classic
execution.

Whether recomputation of a data value v can improve
the energy efficiency or not tightly depends on where in the
memory hierarchy the corresponding load would be serviced
under classic execution, i.e., where in the memory hierarchy
v resides. This is because the location of v in the memory
hierarchy dictates the energy consumption of the respective
load, Eld,v, which in turn sets the energy budget for recom-
putation. Recomputation of v itself incurs an energy cost,
Erc,v , due to the (re)execution of the sequence of instruc-
tions to generate v. We will refer to each instruction in such
a sequence as a recomputing instruction. Therefore, unless
Eld,v exceeds Erc,v, amnesic execution cannot improve en-
ergy efficiency.

Under amnesic execution, the sequence of recomputing
instructions to generate v form a backward slice, which we
will refer to as recomputation slice, RSlice. The first instruc-
tion in the slice is the immediate producer of v, P (v). To be
able to (re)execute P (v), each input operand of P (v) should
be readily available at the anticipated time of recomputation.
This may not always be the case, and (re)execution of P (v)
may trigger the re(execution) of producers of P (v)’s input
operands, recursively.

The recomputation slice to generate v, RSlice(v), can
grow by tracking producer-consumer dependencies for re-
computing instructions, however, not indefinitely. First of
all, the energy cost of recomputation of v, Erc,v , increases
with the number of recomputing instructions in RSlice(v),
and amnesic execution cannot be energy-efficient if Erc,v

exceeds the energy consumption of the respective load,
Eld,v. At the same time, not all of the input operands of
recomputing instructions can be (re)generated by recompu-
tation. This may be the case if input operands correspond
to (i) read-only values to be loaded from memory, such as
program inputs; or (ii) register values which are lost, i.e.,
overwritten at the time of recomputation.

1 amnesia [am’nēZH@]: noun, a partial or total loss of memory.
amnesiac [am’nēzēak], amnesic [-zik, -sik]: noun & adjective.
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Swapping loads for recomputation slices can reduce the
pressure on memory bandwidth and unlock further oppor-
tunities for energy savings: For each load replaced with an
RSlice, the corresponding store (to the same memory ad-
dress) can become redundant if no other load (from the same
address) depends on it. Therefore, amnesic execution can
also filter out energy-hungry stores, and reduce the pressure
on memory capacity by shrinking the memory footprint.

Under amnesic execution, the workload becomes more
compute-intensive to make a better use of classic processors
optimized for computation, as opposed to communication.
In the following, we quantitatively characterize the energy
efficiency potential of amnesic execution. This paper makes
the following contributions:
• Introduction of a practical, illustrative proof-of-concept

design to orchestrate amnesic execution.
• Identification and discussion of practical limitations and

system-level implications of amnesic execution.
In the rest of the paper, Section 2 covers the semantics of
amnesic execution; Section 3 details an illustrative proof-
of-concept design; Sections 4 and 5 provide the evaluation;
Section 6 compares and contrasts amnesic execution with
related work, and Section 7 summarizes our findings.

2. Amnesic Execution Semantics
Under amnesic execution, an energy-hungry load is swapped
with a sequence of recomputing instructions, which form a
recomputation slice, RSlice, iff the energy cost of recompu-
tation along the RSlice remains below the energy consump-
tion of the respective load. In other words, the energy con-
sumption of the load sets the energy budget for recomputa-
tion along the RSlice. If the anticipated energy cost of re-
computation exceeds this budget, the respective load is per-
formed and amnesic execution becomes equivalent to classic
execution.

2.1 Recomputation Slice (RSlice)
For each data value v to be recomputed under amnesic exe-
cution, data dependences determine the order of the recom-
puting instructions in RSlice(v). RSlice(v) includes the im-
mediate producer instruction of v, P (v), and possibly, pro-
ducer instructions of the input operands of P (v), in a recur-
sive manner. Producer instructions may come from different
basic blocks or functions.

Recomputation slices are very unlikely to comprise all
producer instructions (i.e., producers of the producers) along
a dependency chain, as the energy cost of recomputation
along an RSlice increases with the number of recomputing
instructions, and can easily exceed the energy consumption
of the respective load. Amnesic execution prohibits recom-
putation in this case.

Each recomputation slice, RSlice(v), can be regarded as
an upside-down tree with P (v) residing at the root. Each
node represents a producer instruction to be (re)executed.
During recomputation along RSlice(v), data flows from the
leaves to the root. Figure 1 demonstrates an example. Nodes

P(v)

Data flowP1 P2

P3 P5P4

level 1 

level 2 

root

Recomputation Slice: RSlice(v)

Figure 1: Example Recomputation Slice, RSlice(v)

at level 1 correspond to immediate producers of the (input
operands of the) root, nodes at level l correspond to the
producers of nodes at level l-1. The number of incoming
branches at each node reflects the number of producers of
the node. Hence, RSlice(v) is not necessarily a balanced tree.
As (re)executing only a finite number of nodes can fit into
the energy budget set by Eld,v, RSlice(v) cannot grow indef-
initely. At the same time, the energy cost of recomputation
along RSlice(v) includes the cost of retrieving input operands
of the leaf nodes (which cannot rely on producers to recom-
pute their inputs).

In the example from Figure 1, P1 and P2 at level 1 corre-
spond to producers of P (v)’s input operands. (Re)execution
of P1 does not require any more (re)execution. (Re)execution
of P2, on the other hand, requires the (re)execution of three
of P2’s producers: P3, P4, and P5, respectively. The leaf
producers are all shaded in gray. The leaves either repre-
sent terminal instructions which do not have any producers
(e.g., instructions with constants as input operands), or in-
structions for which (re)execution of their producers is not
energy-efficient. Amnesic execution can only function, if
the input operands of leaf instructions are available at their
anticipated time of (re)execution.

2.2 Non-recomputable Inputs
Not all of the input operands of leaf instructions of an RSlice
can be (re)generated by recomputation. This may be the case
if input operands correspond to (i) read-only values to be
loaded from memory, such as program inputs; or (ii) reg-
ister values which are lost, i.e., overwritten at the time of
recomputation. We will refer to such input operands as non-
recomputable inputs. For amnesic execution to work, non-
recomputable inputs of RSlice leaves should not only be
available at the anticipated time of recomputation, but also
be retrievable in an energy-efficient manner. Recomputation
cannot eliminate any memory access to retrieve the non-
recomputable inputs of RSlice leaves. If non-recomputable
inputs do not reside in close physical proximity to the pro-
cessor, the energy cost of their retrieval may easily exceed
Eld,v, rendering recomputation useless. In Section 3.2, we
will discuss dedicated buffering for non-recomputable in-
puts. No dedicated buffering is necessary if the leaf input
operands correspond to constants or live register values.
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2.3 Side Effects
In this paper we focus on single-threaded amnesic execu-
tion2. Therefore, within the course of execution, recompu-
tation along only one RSlice can be performed at a time.
Amnesic execution should prevent corruption of the archi-
tectural state during recomputation, which can be achieved
by allocating dedicated buffers (Section 3.2) similar to clas-
sic microarchitectural storage for speculative state.

Amnesic execution can orchestrate exception handling
similar to exception handling under speculation, as well:
record exceptions as long as recomputation along an RSlice
is taking place, and defer their handling after recomputation
finishes. However, we may need to revisit the definition
of (im)precise exceptions in this case, since recomputation
modifies the architectural control flow by executing extra
(recomputing) instructions, as opposed to speculation.

3. An Illustrative Proof-Of-Concept Amnesic
Implementation

The critical question under amnesic execution is when to
fire recomputation. Potentially, the compiler can extract
RSlice(v) for each load (to read v), by tracking data de-
pendences. Whether recomputation along RSlice(v) is more
energy-efficient than performing the respective load, how-
ever, depends on where in the memory hierarchy v resides.
Being able to only speculate where v can reside during
execution, the compiler can at most probabilistically esti-
mate the energy consumption of the respective load, Eld,v,
which sets the energy budget for recomputation. For each
v where recomputation is estimated to be more energy-
efficient, the compiler can modify the binary to swap the
load for RSlice(v). In the following, we will discuss various
implementation options and how microarchitectural support
can help.

The basic proof-of-concept implementation covered in
this section features an amnesic compiler (Section 3.1), mi-
croarchitectural support for amnesic execution (Section 3.2),
and a runtime (instruction) scheduler to orchestrate amnesic
execution (Section 3.3). We first let the compiler identify and
annotate a set of independent recomputation slices. Then, at
runtime, the amnesic scheduler fires or skips recomputation
along each RSlice(v), by tracking where in the memory hier-
archy v resides at the anticipated time of recomputation.

3.1 Amnesic Compiler and Instruction Set Extensions
The amnesic compiler first extracts a set of independent
RSlices as potential targets for recomputation, and annotates
each, such that the amnesic scheduler (Section 3.3) can iden-
tify them at runtime. The amnesic scheduler triggers recom-
putation along any given RSlice(v) only if loading the data
value v is more energy-hungry than recomputation.

2 Under parallel execution, communication with memory expands along two
dimensions: accesses to thread-local data and accesses to shared data. In
this paper, we focus on the first, in the context of single-threaded execution.
In principle, loads swapped for recomputation may be triggered by core-
to/from-memory (thread-local) or core-to-core (shared) communication.

3.1.1 Slice Formation
The amnesic compiler pass first estimates, probabilistically
(as detailed in the following and Section 4), the energy con-
sumption of loading v, Eld,v. Next comes dependency anal-
ysis to identify the producer instructions of v, in order to cal-
culate the anticipated cost of potential recomputation. This
step starts building RSlice(v) (where the immediate producer
of v, P (v), resides at the root), and lets RSlice(v) grow level
by level, as long as the cumulative cost of recomputation
along RSlice(v) being constructed remains below Eld,v.

As the compiler traverses the dependency chains in con-
structing RSlice(v), it may hit load instructions. In the proof-
of-concept implementation, the compiler replaces each such
load with the respective recomputing slice, recursively.
Therefore, loads and stores cannot be present as interme-
diate nodes in RSlice(v).

To derive the energy cost of recomputation, Erc,v , the
compiler pass uses instruction mix and count within RSlice(v),
along with machine specific energy per instruction (EPI) es-
timates: Erc,v is the sum of [instruction count per category]
× [EPI per category], over all instruction categories repre-
sented in RSlice(v)’s instruction mix. Eld,v calculation, on
the other hand, relies on probabilistic estimates: PrLi, the
probability of having a load serviced by level Li in the mem-
ory hierarchy, is derived from hit and miss statistics of Li
under profiling. Let the EPI estimate for a load serviced in
Li be EPILi. Then, the sum of PrLi× EPILi over all lev-
els i in the memory hierarchy (including off-chip) gives the
probabilistic energy cost per load.

3.1.2 Slice Annotation
As a hint for the amnesic scheduler, the compiler replaces
each load, the swap of which with recomputation is likely to
be more energy-efficient (according to the probabilistic en-
ergy cost comparison explained above) with a special control
flow instruction, RCMP. In this case, the compiler also inserts
the constructed RSlice in the binary.

Semantically, RCMP corresponds to the fusion of a con-
ditional branch with a load3. The resolution of the branch-
ing condition is left to the amnesic scheduler (Section 3.3)
at runtime. Depending on the branching condition (which
is dictated by where in the memory hierarchy v resides at
runtime), RCMP can act either as a branch to the entry point
(starting from the leaves) of RSlice(v), or as a classic load
which reads v from memory. The latter is the case if the am-
nesic scheduler determines at runtime that recomputation is
less energy-efficient than performing the load, i.e., Erc,v ex-
ceeds Eld,v. Accordingly, as input operands, RCMP inherits
all input operands of the respective load, in addition to the
starting address of RSlice(v).

At the exit of each such RSlice(v) embedded in the binary
resides a return instruction, RTN, which returns the control
to the instruction following RCMP in program order after re-

3 Depending on the specifics of the underlying instruction set architecture
(ISA), RCMP can also be synthesized by a pair of branch and load instruc-
tions, without loss of generality.
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Figure 2: Amnesic Microarchitecture & Scheduler

computation along RSlice(v) finishes. RTN semantics closely
mimic procedure return instructions. Before return, the re-
computed data value v gets copied into the destination regis-
ter of the eliminated load (recall that RCMP inherits all source
and destination parameters of the respective load).

Only if the leaves of RSlice(v) have non-recomputable
input operands, the compiler places REC instructions into
the binary, which serve buffering of non-recomputable in-
put operands such as overwritten register values. An REC

instruction goes right after each instruction, a replica of
which serves as a leaf in RSlice(v). REC has a single inte-
ger operand: leaf-address which points to the address of
the respective leaf instruction in RSlice(v). REC practically
checkpoints the input operands to a dedicated buffer (Sec-
tions 3.2 and 3.3).

Unless the compiler can prove that all input operands
of RSlice(v)’s leaves correspond to constants or live regis-
ter values at the anticipated time of recomputation, REC in-
structions are necessary. Finally, how the compiler orders the
leaves in RSlice(v) code is not critical, as leaf instructions
cannot depend on each other.

3.2 Amnesic Microarchitecture
Amnesic execution should meet two conditions for safe and
effective recomputation:
Condition-I: Prevent corruption of the architectural state

during recomputation (Section 2.3).
Condition-II: Have (non-recomputable) input operand val-

ues of RSlice leaves available at the anticipated time of
recomputation (Section 2.2).

Fig. 2 captures microarchitectural support to meet Condi-
tion-I and Condition-II in orchestrating amnesic execution.
Recall that only one RSlice can be active, i.e., traversed for
recomputation, at a time4.
Scratch-File (SFile): To satisfy Condition-I, the amnesic
microarchitecture deploys the dedicated buffer SFile. During
recomputation, as program control traverses an RSlice, the
data flows through the SFile, leaving the (physical) register-

4 Offloading recomputation to spare or idle cores, or using helper threads
may improve energy efficiency further by enabling concurrent recomputa-
tion. However, the basic proof-of-concept implementation assumes strictly
sequential execution semantics.

file intact. Recomputing instructions from an RSlice do not
perform any memory access, and communicate over SFile
only.
Renamer: During traversal of each RSlice, a dedicated Re-
namer maps register references per recomputing instruc-
tion to SFile entries. Semantically, the amnesic renamer
closely mimics the rename logic of classic out-of-order ma-
chines. In this context, SFile becomes not any different than
the physical registerfile and follows similar rules for space
(de)allocation.
History Table (Hist): For each RSlice where the leaf in-
put operands correspond to constants or live values from the
(physical) registerfile, Condition-II is automatically satis-
fied. Only for non-recomputable leaf input operands, dedi-
cated storage is required to satisfy Condition-II. The am-
nesic microarchitecture can buffer non-recomputable input
operands for each RSlice leaf in the dedicated history table
Hist. Each entry of Hist keeps the address (leaf-address)
and non-recomputable input operands of a leaf instruction.
Instruction Buffer (IBuff) can cache recomputing instruc-
tions within each RSlice, in order to relax amnesic execu-
tion’s potential pressure on the instruction cache. Each entry
of IBuff corresponds to a recomputing instruction.

SFile, Hist, and IBuff all feature an invalid field per
entry to orchestrate (de)allocation of space as necessary.

3.3 Amnesic Scheduler
3.3.1 Runtime Policies
At runtime, the amnesic scheduler decides whether recom-
putation along each RSlice(v) embedded into the binary by
the compiler (Section 3.1) can improve energy efficiency
or not, depending on where in the memory hierarchy v re-
sides. Specifically, each time a RCMP instruction is fetched,
the scheduler has to decide whether to branch to the entry
point of the respective RSlice(v), or whether to perform the
load to read v from memory. A control flag, recompute, re-
mains set as recomputation – traversal of an RSlice – is in
progress. recompute is reset by default.

To be able to draw a safe decision, the amnesic sched-
uler needs to track where in the memory hierarchy v re-
sides. There are different options to track or predict the lo-
cation of v at runtime. In the proof-of-concept implementa-
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tion, the amnesic scheduler lets the corresponding load probe
on-chip memory (caches), and fires recomputation upon a
miss in the first-level cache (FLC), or alternatively, upon a
miss in the last-level cache (LLC) – by using either a first
or a last level cache miss as an indicator for an energy-
hungry off-chip memory access. In this case, RCMP becomes
the equivalent to branch on FLC miss or, alternatively,
branch on LLC miss, with the branch target being the en-
try point of the respective RSlice. The amnesic scheduler
fires recomputation by setting the recompute flag. Other-
wise, execution follows the classic trajectory by performing
the load.

In this case, recomputation cost includes the cost of prob-
ing the on-chip memory hierarchy. FLC and LLC policies
are heuristic-based and may result in false-negatives (lost
recomputation opportunity) and false-positives (energy-
inefficient recomputation). Better amnesic policies can be
devised by using more accurate (miss) predictors [28, 15, 1],
which can also help eliminate the probing overhead. We
leave further refinement and exploration of such policies to
future work – the design space is pretty rich. In Section 5,
we will also compare FLC and LLC policies to a runtime-
oblivious policy, Compiler, which always triggers recompu-
tation each time a RCMP instruction is fetched.

3.3.2 Putting It All Together
Amnesic activity when recompute is reset: No recompu-
tation takes place as long as the recompute flag stays re-
set. During this period, amnesic execution is equivalent to
classic execution, if no RSlice in the binary features non-
recomputable leaf inputs. Otherwise, the amnesic scheduler
has to record such non-recomputable input operands into
Hist. To this end, the scheduler tracks REC instructions (Sec-
tion 3.1.2). REC instructs the scheduler to record all non-
recomputable input operands in a Hist entry ( 0© in Fig. 2),
along with leaf-address.
Triggering recomputation: For each RCMP instruction fetch-
ed, the amnesic scheduler first needs to resolve the branching
condition: whether recomputation is more energy-efficient
than performing the memory access, i.e., whether Eld,v ex-
ceeds Erc,v. This decision can be drawn following any of the
runtime policies from Section 3.3.1, FLC or LLC. For exam-
ple, under LLC, the amnesic scheduler probes the caches,
and fires recomputation by setting the recompute flag upon
an LLC miss. Otherwise, the load is performed following
the classic execution trajectory.
Amnesic activity when recompute is set: RCMP branches
to the entry point of RSlice(v), and instruction fetch starts
from the first leaf. Each leaf instruction first has its desti-
nation register renamed ( 2© in Fig. 2). Each leaf instruc-
tion with non-recomputable input operands next probes
Hist with leaf-address ( 3©) to read its input operands,
which directly are fed into the corresponding execution units
( 4©). Leaf instructions with constant or live register input
operands do not need to probe Hist. Upon finishing execu-
tion, each leaf writes its result to the SFile ( 5©).

Non-leaf recomputing instructions which represent inter-
mediate nodes in RSlice(v) read their input operands from
SFile ( 6©) after having their source and destination regis-
ters renamed ( 2©). Upon collecting the input operands, re-
computing instructions proceed to the execution units ( 7©),
and write their results back to the SFile once execution
completes ( 8©). All (non-leaf) recomputing instructions in
RSlice(v) execute sequentially in this manner until the RTN

instruction of the slice is fetched. Before return, the recom-
puted data value v gets copied from SFile into the destina-
tion register of the eliminated load (recall that RCMP inherits
all source and destination parameters of the respective load).
The amnesic scheduler then resets recompute flag to demar-
cate the end of recomputation. Execution continues from the
instruction following RCMP in program order.

IBuff is an optional structure to help reduce the pres-
sure on instruction cache under recomputation. Very much
like the instruction cache, fetch logic can fill IBuff with re-
computing instructions ( 1©). IBuff in turn feeds the Renamer
with recomputing instructions ( 2©).

3.4 Storage Complexity
We next analyze the expected storage complexity for each
component of the amnesic microarchitecture from Fig. 2.
Recall that the amnesic microarchitecture only processes in-
structions with register source operands and register desti-
nations, and excludes memory or control flow instructions.
Without loss of generality, the following analysis assumes a
RISC-style ISA.
SFile: A recomputing instruction typically writes its result
to one destination register, and reads its input operands from
two source registers. Accordingly, the maximum possible
number of renaming requests per recomputing instruction,
max#rename becomes

max#rename = max#src +max#dest = 3

where max#src (max#dest) is the maximum number of
source (destination) register operands per recomputing in-
struction. At any given time, only one RSlice can be tra-
versed. Therefore, SFile capacity does not depend on the
total RSlice count in the binary, but grows with the instruc-
tion count per RSlice, which can exponentially increase with
the tree height h. A tall RSlice, however, is very unlikely
to find any place in the binary, as it can easily result in
excessive recomputation overhead to render recomputation
useless. The amnesic compiler captures such diminishing
returns and prevents excessive growth of the RSlice (Sec-
tion 3.1): practically, the compiler not only influences RSlice
topology, but also caps the tree height h to maximize energy
savings. Accordingly, we can derive a loose upper-bound for
SFile capacity as
max#inst per RSlice ×max#rename = max#inst per RSlice × 3

where max#inst per RSlice corresponds to the maximum of in-
struction count per RSlice across all RSlices in the binary.
Hist: Hist can keep data for multiple RSlices during execu-
tion. For each RSlice, Hist can contain as many entries as the
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RSlice’s number of leaves. Thus, a loose upper-bound for the
number of entries in Hist becomes

#RSlice×max#leaf per RSlice

where #RSlice is the number of RSlices in the binary; and
max#leaf per RSlice, the maximum of the number of leaves per
RSlice (which may grow with tree height h). Each Hist entry
accommodates at most max#src values, to cover all non-
recomputable input operands per leaf.
IBuff: The capacity of IBuff grows with the number of in-
structions per RSlice. Hence, a loose upper-bound for IBuff
capacity becomes max#inst per RSlice.

3.5 Technicalities
The proof-of-concept implementation represents a basic de-
sign, which neglects various optimization opportunities such
as instruction reuse among recomputing slices, or hardware
resource sharing with the underlying microarchitecture.

During traversal of an RSlice, latency per recomputing
instruction remains very similar to its classic counterpart, as
the amnesic microarchitecture follows the pipelining seman-
tics of the underlying microarchitecture (just with an alter-
native instruction and operand supply of similar latency).

The storage complexity of amnesic structures from Fig. 2
tends to be low (Section 3.4). Only the unlikely capacity
overflow of Hist can impair recomputation, and only for
RSlices with non-recomputable leaf input operands. The am-
nesic scheduler can track these cases by failed REC instruc-
tions (Section 3.1.2) and enforce the corresponding RCMP to
skip recomputation (i.e., to perform the load). To this end,
the amnesic scheduler has to uniquely identify the match-
ing RCMP. This can be achieved by assigning a unique ID,
RSlice-ID, to each RSlice in the binary, and providing it as
an operand to both REC and RCMP.

In processing recomputing instructions, the amnesic mi-
croarchitecture has to differentiate between leaves and in-
termediate nodes, since different structures supply the in-
put source operands to each: The inputs of leaves can come
from the registerfile (a live value) or Hist (an overwrit-
ten value). The inputs of intermediate nodes come from
SFile. The compiler annotates leaves and accesses to Hist
to distinguish between these cases. Specifically, the com-
piler changes source register identifiers of leaf instructions
reading their operands from Hist to an invalid number. Leaf
instructions with valid source register identifiers directly ac-
cess the registerfile. Non-leaf recomputing instructions fol-
low the paths 2© and 6© in Fig. 2.

Recall that there is another potential class of leaves with
non-recomputable input operands: read-only values to be
loaded from memory, such as program inputs. In principle,
replacing the load to read v from memory with RSlice(v)
which features possibly more than one such load at the
leaves does not make sense. Hist is designated to record
overwritten register input operands, but Hist can also keep
such read-only values, and may make recomputation along
such RSlice(v) energy-efficient.

4. Evaluation Setup
Benchmarks: To quantify the energy efficiency poten-
tial of amnesic execution, we experiment with 33 sequen-
tial or single-threaded benchmarks from SPEC-2006 [13],
NAS [2], PARSEC [4] and Rodinia [8] suites, which span
various application domains and memory access character-
istics, as listed in Table 2.

Suite Benchmarks Inputs
SPEC mcf, perlbench, gobmk, cal-

culix, GemsFDTD, libquan-
tum, soplex, lbm, omnetpp,
sphinx3 (sx)

test

NAS
is A
cg W
ft, mg S

PARSEC canneal (ca), facesim (fs),
ferret (fe), raytrace (rt),
blackscholes, x264, dedup,
freqmine, fluidanimate,
streamcluster, swaptions,
bodytrack

simsmall

Rodinia

backpropagation (bp) 65536
bfs graph1MW 6.txt
kmeans kdd cup
nw 2048 10 1
particlefilter -x 128 -y 128 -z

10 -np 10000
srad (sr) 100 0.5 502 458 1
hotspot 512 512 2 1

Table 2: Benchmarks deployed.

Binary generation: We implement the greedy compiler pass
detailed in Section 3.1 as a (binary generator) Pin [25] tool.
The EPI estimates (Section 3.1.1) come from measured data
from [33]. Although these estimates are for a parallel pro-
cessor (Intel’s Xeon Phi), the simulated microarchitecture is
very similar to its per core configuration (Table 3). We also
fine-tune these estimates by extracting EPI values for differ-
ent instruction categories from McPAT [23] integrated with
the Sniper-6.1 [7] microarchitectural simulator. We derive
PrLi (Section 3.1.1), the probability of having a load ser-
viced by level Li in the memory hierarchy, using hit and miss
statistics for Li from Sniper. We also implement a runtime
profiler in Pin, which collects dependency information for
binary generation. Using the dependency information (from
the Pin-based runtime profiler) and EPI estimates, the (bi-
nary generator) Pin tool identifies RSlices that can improve
energy efficiency, and instruments them for inclusion into
the binary.

Technology node: 22nm
Operating frequency: 1.09 GHz
L1-I (LRU): 32KB, 4-way 0.88nJ 3.66ns
L1-D (LRU, WB): 32KB, 8-way 0.88nJ 3.66ns
L2 (LRU, WB): 512KB, 8-way 7.72nJ 24.77ns
Main Memory Read: 52.14nJ Write: 62.14nJ 100ns

Table 3: Simulated architecture.
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Recomputation at runtime: We implement the amnesic
microarchitecture from Fig. 2 in Sniper, and run the anno-
tated binaries on it. Sniper facilitates seamless integration
with Pin. Runtime energy and performance statistics come
from Sniper (+ McPAT) simulations. Table 3 gives EPI and
(round-trip) access latency for each level in the simulated
memory hierarchy. We conservatively model EPI and access
latency for Hist after L1-D; for SFile, after the physical reg-
isterfile; and for IBuff, after L1-I. Accordingly, we model
RCMP’s overhead after a conditional branch; REC’s, after a
store to L1-D; RET’s, after a jump.

5. Evaluation
5.1 Impact on Energy Efficiency
Fig. 3 captures the impact of amnesic execution on energy-
delay product, EDP [11], as a proxy for energy efficiency.
The y-axis is normalized to the EDP under classic execution.
Out of 33 benchmarks we deployed, only 11 have the poten-
tial to provide more than 10% EDP gain. In the following,
we will focus on these benchmarks. The rest of the bench-
marks did not benefit much from recomputation (only 4 pro-
vided more than 5% EDP gain) because they did not have
many energy-hungry loads and/or recomputation degraded
temporal locality. Recomputation cannot improve energy ef-
ficiency of compute-bound applications unless they incorpo-
rate a few but very energy-hungry memory references.
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Figure 3: EDP gain under amnesic execution.

In Fig. 3, we compare representative runtime policies
from Section 3.3.1 – FLC, LLC and Compiler, to two orac-
ular policies: Oracle and C(onservative)-Oracle. FLC, LLC,
Compiler and C-Oracle select from the very same set of
RSlices for recomputation at runtime – this set is identified
by the compiler pass using the probabilistic energy model
(Section 3.1.1). At runtime, FLC (LLC) fire recomputation
along RSlice(v) if the respective load of v misses in FLC
(LLC). Compiler, on the other hand, always fires recompu-
tation, for each RCMP encountered.

C-Oracle can predict with 100% accuracy where the load
of v will be serviced in the memory hierarchy as the amnesic
scheduler decides whether to perform the load or whether
to fire recomputation along RSlice(v). C-Oracle hence bases
the runtime decision on this 100% accurate prediction. Ora-
cle, too, can predict at runtime with 100% accuracy where a

load would be serviced. The key difference of Oracle from
C-Oracle comes from a different (i.e., optimal) set of RSlices
baked in the binary, than the compiler’s probabilistic energy
model based set (which applies to the rest of the policies).
The EDP difference between Oracle and C-Oracle there-
fore illustrates how accurate compiler’s probabilistic energy
model is. The smaller the EDP difference, the more accu-
rate is the probabilistic energy model in characterizing an
application’s loads. In other words, C-Oracle demonstrates
the maximum possible EDP gain with the given probabilistic
energy model of the loads.

We fine-tune the probabilistic energy model of the am-
nesic compiler pass using dynamic execution traces (Sec-
tion 3.1.1). Notice that the EDP gain under Compiler evolves
with the accuracy of this probabilistic energy model, but
such fine-tuning may not always be possible. The more accu-
rate the energy model, the more accurate becomes amnesic
compiler’s prediction of where the load reading v will be
serviced at runtime. And the more accurate this prediction,
the more energy efficiency can the Compiler policy harvest,
under which each RCMP always triggers recomputation. The
EDP gains under Compiler therefore reflect best-case esti-
mates.

Recall that the set of RSlices recomputed by each policy is
different: Compiler recomputes along each RSlice embedded
in the binary, which form the set S. C-Oracle picks the
optimal subset from S (SC−Oracle) for recomputation, i.e.,
only recomputes RSlice(v) if recomputation is exactly more
energy-efficient than performing the load of v. FLC (LLC),
on the other hand, picks the subset of S, SFLC (SLLC),
which only includes RSlice(v)s where the respective load
to read v misses in L1 (L2). Subject to the accuracy of the
probabilistic energy model and such runtime decisions, the
set of RSlices recomputed by Oracle may be very different:
Oracle’s decisions are based on actual (not probabilistic or
predicted) energy costs.

Overall, with the exception of sx and cg (and fe, rt to
a lower extent), we observe that C-Oracle closely tracks
Oracle, rendering the probabilistic energy model accurate.
Except sr, the best-case Compiler closely tracks C-Oracle.
On the other hand, the difference between the best-case
Compiler and FLC is barely visible, with the exception of
sx, bfs and sr. LLC is consistently worse than FLC. The main
delimiter for LLC is the overhead of probing the last-level
cache (L2) to detect a miss which is much larger than the
overhead of probing the first-level cache (L1) to detect a miss
under FLC.
EDP−Gain(Compiler) < EDP−Gain(FLC): In
principle, as the amnesic compiler can only probabilistically
take into account where a load might get serviced at run-
time, by firing recomputation along RSlice(v) for each RCMP

encountered, the Compiler policy can easily trigger unnec-
essary recomputations, and hence, hurt energy efficiency –
particularly if v resides in L1. FLC, on the other hand, pre-
vents recomputation in this case. This is clearly visible for
sr, where Compiler triggers too many recomputations that
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do not provide sizable energy gain (due to recomputed data
mostly being in L1), but introduce performance overhead
(since RSlices recomputed usually take longer than access-
ing L1). Since the energy gain due to recomputation does not
offset the performance degradation, the EDP of sr degrades
7% under Compiler. Although the difference is small, Com-
piler yields lower EDP gain than FLC in sx, cg, fe, rt and
bp.
EDP−Gain(Compiler) > EDP−Gain(FLC): Com-
piler can provide higher gains than FLC (LLC) when they
recompute the very same set of RSlices; i.e., SFLC (SLLC)
overlaps with S – when none of the vs is present in L1 (L2).
This is because Compiler does not need to probe the caches,
so there is no probing cost. Although the difference is mostly
small, this is the tendency in mcf, is, ca, fs, and bfs.
EDP(FLC) vs.EDP(LLC): If v resides in L1, both FLC
and LLC simply skip recomputation. If v resides in L2, only
FLC fires recomputation. In this case, depending on the in-
struction mix and count in RSlice(v), recomputation may be
less expensive than retrieving v from L2, particularly for
short RSlice(v). At the same time, the probing cost is lower
for FLC than LLC. As Section 5.4 reveals, the benchmark ap-
plications feature predominantly short RSlice(v)s, with much
less than 50 instructions. Overall, FLC renders the higher
EDP gain, since recomputation along RSlice(v) remains usu-
ally cheaper than retrieving v from L2.
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Figure 4: Energy gain under amnesic execution.
Impact on energy & execution time: Due to memory ac-
cesses being both energy-hungry and slow, most of the time,
the reduction in EDP comes from a reduction in both energy
and execution time. Fig. 4 shows the corresponding reduc-
tion in energy consumption; Fig. 5, in execution time, under
amnesic execution, normalized to classic execution. We ob-
serve similar trends to EDP for both.
Putting it all together: An amnesic design which always
fires recomputation following compiler hints (i.e., Com-
piler, as opposed to following policies like FLC or LLC)
can be very effective as Fig. 3 reveals, but it is limited
by the accuracy of compiler’s probabilistic energy model.
Overall, Compiler improves the EDP of all benchmarks,
with the exception of sr and mg where EDP is degraded by
7% and 1.37%, respectively. Eight of the benchmarks ob-
tain more than 10% EDP gain under Compiler, where the
range changes from 12.04% to 87%. FLC and LLC yield
slightly lower EDP gains than Compiler, in general. Since
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Figure 5: % reduction in execution time.

they tend do make more conservative decisions on recompu-
tation, they do not experience any EDP degradation. For the
afore-mentioned 8 benchmarks, EDP gain under FLC (LLC)
range from 14.37% to 85.3% (11.39% to 71.92%).

To shed further light on these findings, we will next look
into instruction mix (Section 5.2), memory access character-
istics (Section 5.3) and RSlice characteristics (Section 5.4)
under amnesic execution.

5.2 Impact on Instruction Count and Mix
Under amnesic execution, the sequence of recomputing in-
structions in each RSlice(v) replaces the respective load to
read v from memory. Therefore, we expect an increase in the
number of (dynamic) instructions along with a decrease in
the number of (dynamic) load instructions under amnesic ex-
ecution. Table 4 shows how the dynamic instruction mix and
energy breakdown changes under amnesic execution. For
comparison, we also provide the energy breakdown under
classic execution. Without loss of generality, we report the
amnesic execution outcome for the Compiler policy, which
incurs the maximum possible number of recomputations.

The first half of the table captures the % increase in the
dynamic instruction count along with the % decrease in the
dynamic load count under amnesic execution with respect
to the classic baseline. In the second half, we report the %
energy breakdown under classic and amnesic execution: we
differentiate between stores, loads and all other instructions
(which form the category Non-mem). Under amnesic exe-
cution, we also report the share of Hist table reads, which
retrieve non-recomputable input operands of RSlice leaves.

We observe that amnesic execution reduces the energy
consumed by load instructions for all benchmarks, while the
energy consumed by Non-mem instructions increases due
to recomputation along RSlices. is from NAS, among the
benchmarks listed in Table 4, is the most responsive to am-
nesic execution: The energy consumption of its loads drops
from 84.3% to 9.62%, at the expense of executing≈ 17.97%
more instructions due to recomputation. In return, the num-
ber of dynamic loads reduces by 49.99% under amnesic ex-
ecution.

5.3 Memory Access Characteristics
The effectiveness of amnesic execution is constrained by, for
each target data value v, (i) where in the memory hierarchy
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Benchmark % increase in (dyn.)
instruction count

% decrease
in load count

Classic Energy Breakdown (%) Amnesic Energy Breakdown (%)
Load Store Non-mem Load Store Non-mem Hist Read

mcf 4.47 6.19 91.67 2.12 6.20 75.33 2.88 6.77 0.48
sx 4.55 6.68 70.43 2.70 26.86 58.44 3 28.01 2.42
cg 3.97 2.11 82.43 0.45 17.10 80.03 0.51 17.99 0.51
is 17.97 49.99 84.30 11.19 4.49 9.62 13.17 9.75 3.06e-06
ca 7.38 7.95 85.21 5.16 9.61 62.26 5.20 10.42 0.70
fs 1.83 3.08 53.90 14.37 31.71 32.36 14.78 32.61 0.68
fe 3.55 1.75 58.49 15.50 26 47.81 15.57 27.03 0.84
rt 1.97 6.08 67.87 8.58 23.54 60.67 8.73 24.27 1.16
bp 31.89 55.55 87.71 7.22 5.05 52.68 7.22 7.38 2.13
bfs 1.20 60.93 79.18 1.87 18.94 68.35 2.20 21.92 2.42e-07
sr 20.02 23.33 49.89 9.43 40.66 30.35 14.69 47.11 7.36

Table 4: Dynamic instruction mix and energy breakdown under amnesic execution.

Benchmark Compiler FLC LLC
L1-hit (%) L2-hit (%) Memory-hit (%) L1-hit (%) L2-hit (%) Memory-hit (%) L1-hit (%) L2-hit (%) Memory-hit (%)

mcf 12.02 11.01 76.97 10.73 11.16 78.09 10.73 11.16 78.09
sx 85.33 0.85 13.80 85.08 0.86 14.04 85.09 0.85 14.05
cg 87.49 0.17 12.33 87.49 0.17 12.33 87.49 0.17 12.33
is 49.64 19.25 31.10 49.64 19.25 31.10 49.64 19.25 31.10
ca 27.85 7.50 64.63 27.84 7.51 64.64 27.84 7.51 64.64
fs 56.47 1.92 41.59 56.46 1.92 41.60 56.46 1.92 41.61
fe 63.26 10.06 26.67 63.22 10.07 26.70 63.22 10.05 26.71
rt 92.95 0.75 6.28 92.21 0.83 6.94 92.85 0.06 7.07
bp 72.49 4.11e-3 27.49 72.49 4.11e-3 27.49 72.49 4.11e-3 27.49
bfs 98.43 1.15e-3 1.56 98.43 1.15e-3 1.56 98.43 1.15e-3 1.56
sr 93.70 0.03 6.26 93.70 0.03 6.26 93.70 0.03 6.26

Table 5: Memory access profile of load instructions under classic execution, which are swapped for recomputation under
Compiler, FLC, and LLC policies, respectively.

v resides; (ii) the cost of recomputation along RSlice(v). (i)
sets the budget for recomputation, and recomputation is only
effective if (ii) remains below this budget. The lower the
level in the memory hierarchy where v resides, the higher
becomes the budget for recomputation along RSlice(v). Am-
nesic execution is more likely to provide higher energy effi-
ciency, if the target v resides in lower levels of the memory
hierarchy.

Table 5 shows the memory access profile of load instruc-
tions under classic execution, which are swapped for recom-
putation under Compiler, FLC, and LLC policies, respec-
tively. We report the percentage of such load instructions
serviced by each level in the simulated memory hierarchy
(Table 3). Recall that the set of RSlices recomputed by each
policy is different (Section 5.1), therefore, so is the set of
loads swapped for recomputation.

Memory access characteristics help us reason about why
some benchmarks benefit more from recomputation, con-
sidering different policies. For example, bfs exhibits higher
EDP gain for the Compiler policy, but relatively lower EDP
gain for FLC and LLC policies (Fig. 3). As Table 5 re-
veals, bfs’s swapped loads are almost entirely serviced by
L1. Since bfs’s swapped loads barely miss in L1, FLC and
LLC policies fire recomputation less often. Compiler, on the
other hand, triggers recomputation regardless of where the

target data resides in the memory hierarchy. bfs’s energy effi-
ciency gain under Compiler comes from the relatively short,
hence cheap RSlice(v)s (Section 5.4), even though the tar-
get v could be found in L1 most of the time. In this case,
Compiler comes very to close Oracle.

Quite the opposite trend applies for sr, the benchmark
where Compiler falls noticeably behind Oracle and even
degrades the EDP. As Table 5 reveals, similar to bfs, most
(93.7%) of sr’s swapped loads are serviced by L1. As it was
the case for bfs, the target v could be found in L1 most
of the time, but Compiler always triggers recomputation
along RSlice(v) instead. As the respective RSlice(v)s of sr
are not as short, hence cheap, as the ones of bfs (Section 5.4),
such excess recomputations cause Compiler to render a 7%
degradation of EDP.

5.4 RSlice Characteristics
The number of instructions in an RSlice (i.e., RSlice length)
is a fundamental determinant of the cost of recomputation.
As RSlice length increases, recomputation incurs a higher
cost due to the (re)execution of a larger number of instruc-
tions. Recomputation, i.e., traversal of an RSlice(v) under
amnesic execution, provides higher energy efficiency ben-
efits if the target data value v resides in lower levels of the
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Figure 6: Histograms of instruction count per recomputed RSlice under Compiler policy.

memory hierarchy, and, at the same time, if the respective
RSlice(v) is relatively short.

Fig. 6 shows histograms of instruction count per (recom-
puted) RSlice under Compiler policy. Recall that Compiler
always triggers recomputation, independent of where v re-
sides in the memory hierarchy. Therefore, Fig. 6 covers the
profile for the entire set of RSlices (as identified by the
amnesic compiler; Section 3.1). Overall, we observe that
78.32% of the RSlices have a length less than 10 instruc-
tions, across the board. Only 0.09% of the RSlices contain
more than 50 instructions. According to the storage com-
plexity analysis from Section 3.4, this implies a small foot-
print for SFile and IBuff (Fig. 2), which grow with RSlice
length.

For example, for the is benchmark from NAS, more than
30% of the loads swapped for recomputation have their
data residing in the main memory (Table 5). At the same
time, as Fig. 6d reveals, the application features mostly short
RSlices. As a result, amnesic execution results in very high
EDP gain (87% according to Fig. 3). Although bfs features
much shorter RSlices than is (Fig. 6j), its EDP gain remains
significantly lower (18.54% according to Fig. 3), because
98.43% of its loads swapped for recomputation have their
data residing in L1 (Table 5).

Hist from Fig. 2 only serves buffering non-recomputable
(nc) leaf input operands of RSlices. Fig. 7 shows the per-
centage share of RSlices featuring non-recomputable leaf in-

m
cf sx cg is ca fs fe rt bp bf
s sr

w/o nc w/ nc

0

20

40

60

80

100

(%
) 

R
S

lic
es

Figure 7: % of RSlices with non-recomputable leaf inputs.

put operands for all applications. With the exception of is
and bfs, such RSlices represent the vast majority, rendering
Hist a critical structure. According to our analysis, across
all benchmarks, Hist has to record the non-recomputable in-
puts of at most 565 of such RSlices at a time (i.e., for fs),
where the average number of leaves is 1. A Hist design of no
more than 600 entries can accommodate such demand (Sec-
tion 3.4).

In the evaluation, we sized the microarchitectural compo-
nents of Fig. 2 conservatively for the worst-case, to be able to
capture the impact of recomputation without any bias. How-
ever, as Fig. 6 reveals, less than 50 entries for SFile or IBuff
can cover most of the RSlices. In this case, recomputation
along excessively long RSlices will not be possible, but long
RSlices are unlikely to deliver noticeable gains due to the
higher (recomputation) cost incurred. Hence, we expect the

10



0 20 40 60 80 100

0
10

20
30

40
50

60
(%

) 
Lo

ad
s

Load Value Locality (%)

(a) mcf

0 20 40 60 80 100

0
20

40
60

80
10

0
(%

) 
Lo

ad
s

Load Value Locality (%)

(b) sx

0 20 40 60 80 100

0
20

40
60

80
10

0
(%

) 
Lo

ad
s

Load Value Locality (%)

(c) cg

0 20 40 60 80 100

0
20

40
60

80
10

0
(%

) 
Lo

ad
s

Load Value Locality (%)

(d) is

0 20 40 60 80 100

0
20

40
60

80
10

0
(%

) 
Lo

ad
s

Load Value Locality (%)

(e) ca

0 20 40 60 80 100

0
10

20
30

40
50

60
(%

) 
Lo

ad
s

Load Value Locality (%)

(f) fs

0 20 40 60 80 100

0
10

20
30

40
50

60
(%

) 
Lo

ad
s

Load Value Locality (%)

(g) fe

0 20 40 60 80 100

0
20

40
60

80
10

0
(%

) 
Lo

ad
s

Load Value Locality (%)

(h) rt

0 20 40 60 80 100

0
20

40
60

80
(%

) 
Lo

ad
s

Load Value Locality (%)

(i) bp

0 20 40 60 80 100

0
20

40
60

80
10

0
(%

) 
Lo

ad
s

Load Value Locality (%)

(j) bfs

0 20 40 60 80 100
0

20
40

60
80

10
0

(%
) 

Lo
ad

s
Load Value Locality (%)

(k) sr

Figure 8: % value locality of loads (under classic execution), which are swapped for recomputation by the Compiler policy.

gains from Fig. 3 mostly hold under practical sizing consid-
erations.

5.5 Break-even Point
The basic idea behind amnesic execution is to swap energy-
hungry load instructions with a sequence of non-memory
(Non-mem) instructions to generate the respective data val-
ues. Each such sequence forms an RSlice. The non-memory
instructions in an RSlice are mostly arithmetic/logic, as
RSlices do not feature memory or control flow instructions
by construction (Section 3.1.1). The effectiveness of am-
nesic execution hence comes from such non-memory in-
structions being significantly less energy-hungry than load
instructions, in today’s machines at least.

The energy efficiency gain under amnesic execution
tightly depends on the relative energy cost of non-memory
instructions with respect to loads, i.e.,

R = EPINon−mem/EPIld
where EPINon−mem captures the average EPI of a non-
memory (i.e., arithmetic/logic) instruction; EPIld, of a load.
R is a strong function of the underlying (micro)architecture
and technology. The default value of R we used throughout
the evaluation is

Rdefault = EPINon−mem,default/EPIld,default
= 0.45nJ/52.14nJ ≈ 0.0086

which comes from the measured EPI estimates from [33]
(Section 4). We next extract the value of R which would
render amnesic execution useless, i.e., which would result in

the same EDP under amnesic and classic execution. In other
words, we analyze by how much the relative energy cost of
non-memory instructions should increase (with respect to
loads) to reach the break-even point for amnesic execution.

Bench. Rbreakeven Bench. Rbreakeven

(normalized) (normalized)
mcf 66.74 fe 13.7
sx 53 rt 45.63
cg 22.89 bp 83.25
is 73.74 bfs 3.89
ca 30.71 sr 36.74
fs 32.35

Table 6: Break-even point (for C-Oracle).

As the relative energy cost, R, increases, amnesic execu-
tion becomes less and less beneficial, and past the value of R
at the break-even point, Rbreakeven, as expensive as classic
execution. Table 6 lists Rbreakeven, normalized to Rdefault,
for all of the benchmark applications. Each benchmark ap-
plication reaches the break-even point at a different value of
R due to the differences in the instruction mix (and hence, in
RSlices). For example, for bfs to reach the breakeven point,
R (the relative cost of a non-memory instruction with re-
spect to a load) should increase by 3.89× over its default,
Rdefault. Rbreakeven/Rdefault takes much higher values for
the rest of the benchmarks. In conclusion, unless R increases
over Rdefault by the coefficients provided in Table 6, am-
nesic execution is likely to stay more energy-efficient than
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its classic counterpart. Considering current technology pro-
jections [14], such increases are unlikely.

5.6 Data Locality Analysis
Fig. 8 shows the % value locality of load instructions, which
are swapped for recomputation under the Compiler policy.
In other words, these are the loads which get replaced by
RSlices. Without loss of generality, we stick to the Compiler
policy in order to cover the entire set of swapped loads
– recall that FLC and LLC policies only selectively swap
loads for recomputation, while Compiler always enforces the
swap.

We observe that, except bfs and sr, all of the benchmarks
exhibit relatively low value locality for the swapped loads –
the percentage of the swapped loads that have higher than
95% value locality remains less than 28% across the board.
For bfs and sr, all of the swapped loads exhibit around 90%
(Fig. 8j) and 99% (Fig. 8k) value locality, respectively. For
cg, value locality is practically 0% (Fig. 8c).

This analysis indicates that amnesic execution is mostly
orthogonal to alternative approaches such as load value pre-
diction [24, 26] or memoization which exploit value local-
ity to mitigate communication overhead. Memoization rep-
resents the dual of recomputation: the idea is replacing fre-
quent and expensive computation with table look-ups for
pre-computed data. In this manner, memoization can miti-
gate the communication overhead, since table look-ups are
much cheaper than long-distance data retrieval. However,
memoization is only effective if the data values generated by
the respective computations exhibit significant value locality
– in our context, these computations correspond to recompu-
tation along RSlice(v)s to generate the data values v, and we
capture in Fig. 8 the locality of such v by the value locality
of the respective loads to read v from memory, without loss
of generality.

6. Related Work
Kandemir et al. proposed recomputation to reduce off-chip
memory area in embedded processors [16]. Koc et al. inves-
tigated how recomputation of data residing in memory banks
in low-power states can reduce the energy consumption [20],
and devised compiler optimizations for scratchpads [19].
These compiler strategies are limited to array variables. Am-
nesic execution is not necessarily confined to static com-
piler analysis or specific data structures. At the same time,
as opposed to amnesic execution, these studies fail short
of exploring opportunities for hardware-software codesign.
DataScalar [5] trades computation for communication by
replicating the most frequently accessed pages in each pro-
cessor’s local memory in a distributed system. As opposed
to DataScalar, amnesic execution leverages recomputation at
a much finer microarchitectural granularity. Near memory
processing (NMP) [35, 22, 30, 17, 29, 21, 31] can bridge the
gap between logic and memory efficiencies by embedding
computation capability in main memory. Similar to amnesic
execution, NMP can minimize energy-hungry data transfers.

Amnesic execution and NMP are orthogonal, and NMP can
benefit from amnesic execution to boost energy efficiency,
or to reduce the memory footprint. Memoization [34, 12],
the dual of recomputation, replaces (mainly frequent and ex-
pensive) computation with table look-ups for pre-computed
data. Similar to NMP and amnesic execution, memoiza-
tion can mitigate the communication overhead, since table
look-ups are much cheaper than long-distance data retrieval.
Memoization is only effective if the respective computa-
tions exhibit significant value locality. Therefore, memoiza-
tion and recomputation can complement each other in boost-
ing energy efficiency. Idempotent Processors [10] execute
programs as a sequence of compiler-constructed idempotent
(i.e., re-executable without any side effects) code regions.
RSlices aren’t required to be strictly idempotent, but idem-
potent regions can act as RSlices. Variants of Speculative
Precomputation [37, 9, 32, 27, 36, 6] rely on speculative
helper threads which run along main threads of execution to
enhance performance (by e.g., masking long latency loads
from main memory). Prefetching by helper threads can result
in notable performance boost, however, helper threads still
perform costly (main) memory accesses. The redundancy in
execution incurs a power overhead on top.

7. Conclusion
In this paper, we investigate the effectiveness of recomputing
data values in minimizing, if not eliminating, the overhead of
expensive off-chip memory accesses. The idea is replacing a
load with a sequence of instructions to recompute the respec-
tive data value, only if it is more energy-efficient. We call
the resulting execution model amnesic. We detail an illustra-
tive proof-of-concept design, identify practical limitations,
and provide design guidelines. The proof-of-concept imple-
mentation features an amnesic compiler, microarchitectural
support for amnesic execution, and an instruction scheduler
to orchestrate amnesic execution at runtime.

Overall, we find that amnesic execution can reduce
energy-delay-product of sequential execution by up to 87%,
24.92% on average, for 11 out of 33 benchmarks deployed.
The rest of the benchmarks did not benefit much from re-
computation (only 4 provided more than 5% gain), mainly
because they did not feature many energy-hungry loads.
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