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Abstract—Growing uncertainty in design parameters (and therefore, in design functionality) renders stochastic computing particularly
promising, which represents and processes data as quantized probabilities. However, due to the difference in data representation,
integrating conventional memory (designed and optimized for non-stochastic computing) in stochastic computing systems inevitably
incurs a significant data conversion overhead. Barely any stochastic computing proposal to-date covers the memory impact. In this
paper, as the first study of its kind to the best of our knowledge, we rethink the memory system design for stochastic computing. The
result is a seamless stochastic system, StochMem, which features analog memory to trade the energy and area overhead of data
conversion for computation accuracy. In this manner StochMem can reduce the energy (area) overhead by up-to 52.8% (93.7%) at the
cost of at most 0.7% loss in computation accuracy.

F

1 MOTIVATION
Stochastic Computing (SC) has received renewed attention in
recent [2], [3], [4], [6]. This is due to the growing uncertainty
in design parameters, and therefore, in design functionality,
as induced by imbalances in modern technology scaling. Rep-
resenting and processing data as quantized probabilities, SC
becomes a natural fit. Data operands in SC take the form
of bitstreams which encode probabilities: independent of the
length (and interleaving of 0s and 1s), the ratio of the number
of 1s to the length of the bitstream determines the operand
value. Computation accuracy increases with the length of the
bitstream at the cost of higher-latency stochastic operations [4].
Still, computing with probabilities can reduce arithmetic com-
plexity significantly, such that the hardware resource cost and
the power consumption become orders of magnitude less than
their conventional (i.e., non-stochastic) counterparts [9], [14].
At the same time, computing with probabilities results in better
tolerance to inaccuracy in input data operands [4].

The common focus of SC proposals from 1960s onwards has
been stochastic logic (arithmetic), neglecting memory, which
represents a crucial system component. Memory mainly serves
as a repository for data collected from external resources (e.g.,
sensors) or data generated by previous steps of computation,
to be used at later stages of computation. Algorithmic char-
acteristics dictate both, the memory capacity requirement and
the memory access pattern (particularly for data re-use). Most
SC proposals deploy conventional digital memories (designed
and optimized for non-stochastic computing) to address such
algorithmic needs. Unfortunately, this practice increases hard-
ware design complexity due to the discrepancy in conventional
digital (i.e., non-stochastic) and stochastic data representations.
Digital to/from stochastic data conversion can reach 80% or
more of the overall energy consumption and hardware cost,
which can easily diminish any benefit from stochastic comput-
ing [3], [16]. In this study, we rethink the memory system design for
stochastic computing.

Practically seamless conversion options between analog and
stochastic data representations [5], [15] makes analog memory
stand out as a particularly promising point in the memory
design space for SC. The downside is potential loss in data
accuracy, where a divergence between the written/stored and
the read values (at the same memory address) often becomes
inevitable, however, which stochastic logic can mask due to its
implicit tolerance to inaccuracy in input data operands.

This paper quantitatively characterizes the potential of analog
memory for seamless SC, using a representative near-sensor stochastic
image processing system as a case study1. We will refer to the
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resulting (practically) seamless stochastic system as StochMem.
Cameras have already become ubiquitous sensors. There is a
demand for near-sensor image processing both to reduce costly
communication with the cloud and to enhance security and
privacy. Real-time image processing algorithms often track
differences between a stream of frames. It is not uncommon that
the processing of the instantaneous frame requires comparison
to a history of previously processed frames, which has to be
stored in and retrieved from some form of memory. In the
following, we will cover five representative image processing
applications which span diverse compute and memory access
characteristics.

2 TOWARD SEAMLESS SC
We will first compare and contrast StochMem featuring analog
memory with the corresponding stochastic near-sensor image
processor featuring conventional digital memory as a represen-
tative baseline.

2.1 Baseline: Stochastic Logic + Conventional Memory
Fig. 1a provides an overview for the baseline stochastic near-
sensor image processor featuring conventional digital memory
(designed and optimized for non-stochastic computing). The
input data operands may represent the result bitstreams of
previous steps of (stochastic) computation, or may directly
come from analog image sensors. To be able to store such
input data in conventional digital memory, a Stochastic to Digital
Converter, SDC (for stochastic input bitstreams) or an Analog to
Digital Converter, ADC (for analog inputs coming from sensors)
become necessary. Moreover, further (stochastic) processing of
the stored data necessitates a Digital to Stochastic Converter, DSC,
upon data retrieval from digital memory. In the following we
briefly describe key system components.
Stochastic Logic incorporates a circuit of basic Boolean gates to
carry out the application-specific stochastic computation (Sec-
tion 3.2). The inputs and outputs are both stochastic bitstreams.
Stochastic to Digital Converter (SDC) can generate the con-
ventional binary representation for any stochastic bitstream. A
digital counter usually serves the purpose, by keeping track of
the number of 1s in the input bitstream to be converted. An SDC
carries out data conversion if the inputs to the stochastic system
represent result bitstreams from previous steps of (stochastic)
computation.
Analog to Digital Converter (ADC) becomes necessary if the
inputs to the stochastic system directly come from analog image
sensors. Conventional ADCs can serve the purpose. For most
applications of SC (including the case study in this paper) an 8
to 10-bit ADC is sufficient [9].

.1. Non-stochastic, analog near-sensor image processing accelerators such as [10]
exist. The focus of this paper is not design and exploration of image processing
accelerators. The scope rather is memory system design for stochastic computing
where we use a representative stochastic system to characterize the impact of
memory.
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Fig. 1: Baseline Near-Sensor Stochastic Image Processor vs. StochMem.

Digital to Stochastic Converter (DSC) transforms conven-
tional binary data retrieved from digital memory (for further
stochastic processing) to stochastic bitstreams. Commonly, DSC
achieves this by comparing an unbiased random number (ob-
tained from a random number generator) to the binary value to
be converted. A one is attached to the output (stochastic) bit-
stream if the random number is less than the binary value (to be
converted); zero, otherwise. The random number generator can
rely on physical random sources or pseudo-random constructs
such as Linear Feedback Shift Registers (LFSRs).
2.2 StochMem: Stochastic Logic + Analog Memory
The data converters (SDC or ADC and DSC) incorporated into
the baseline stochastic system from Fig. 1a each has a significant
energy and area footprint [3], which can easily nullify potential
benefits from SC. In order to reduce this overhead, StochMem
replaces the conventional digital memory with its analog coun-
terpart. Fig. 1b provides the overview for the resulting SC
system. In the following we briefly describe key StochMem
components:
Stochastic Logic is the same as under the baseline system.
Stochastic to Analog Converter (SAC) replaces the SDC of
the conventional system. SAC can generate the analog repre-
sentation for any stochastic bitstream. A conventional analog
integrator can serve the purpose, by measuring the fraction
of time a stochastic input bitstream stays at logic 1. Such an
integrator usually has a smaller energy and area footprint than
the SDC of the baseline system (Section 3.3). A SAC carries
out data conversion if the inputs to StochMem represent result
bitstreams from previous steps of (stochastic) computation.
Analog to Stochastic Converter (ASC) transforms data from
analog memory (for further stochastic processing) to stochastic
bitstreams, similar to the DSC of the conventional system. As
representative examples, [5], [15] both cover energy-efficient
ways for generating stochastic bitstreams from analog inputs.
3 EVALUATION SETUP

3.1 System Design
We evaluate three stochastic near-sensor image-processing de-
signs: two different implementations of the baseline from
Fig. 1a (ConvLFSR and ConvMTJ ) and StochMem. The two
baseline designs differ in the implementation of data converters
as follows:
ConvLFSR: The baseline SC system featuring a 10-bit LFSR and
a comparator as the DSC unit.
ConvMTJ : The baseline featuring a DAC followed by an MTJ-
based ASC as a more energy-efficient DSC. The rest of the
system is identical to ConvLFSR.

All systems first store the input in the memory. Then, they
convert it to stochastic, and feed it to the stochastic logic.
3.2 Stochastic Applications
To evaluate Stochastic Logic from Fig. 1, we use stochastic
circuits of five representative image processing applications:
Robert (Robert’s cross edge detection), Median (median filter

noise reduction), Frame (frame difference-based image segmen-
tation) from [9]; Gamma (gamma correction) from [16]; and KDE
(kernel density estimation-based image segmentation) from [8].

(a) Robert (b) Median (c) Frame (d) Gamma (e) KDE

Fig. 4: Input (expected output) per application on top (bottom).

TABLE 1: Area and energy breakdown.

Stochastic Logic
Circuit Area (um2) Energy (pJ)(@1GHz)
Robert 339 0.440
Median 5382 4.090
Frame 457 0.413

Gamma 76 0.042
KDE 8691 7.094

Baseline System Parameters
Unit Area (um2) Energy (pJ)(@1GHz)

ADC 10-bit [13], [7] 50,000 20
SRAM cell 0.35 10

DSC: 10-bit LFSR 194 0.355
DSC: 10-bit Comparator 96 0.041

DSC: DAC 8-bit [11] 16,000 64
SDC: 10-bit Counter 254 0.179

StochMem System Parameters
Unit Area (um2) Energy (pJ)(@1GHz)

Analog memory cell [12] 58.7 10 (RD) / 100 (WR)
ASC [15] 15 0.030

SAC (integrator) 110 0.010

As input, we use 128 × 128 gray-scale images for Robert,
Median, Frame, and Gamma; and 33 recent frames of a video,
for KDE. Fig. 4 shows the input (expected output) images used
for each application on the top (bottom) row. Expected output
captures the maximum-possible accuracy. To calculate the accu-
racy of the end results, we calculate the average pixel-by-pixel
difference between the output image of each stochastic circuit
and the corresponding maximum-possible-accuracy output.
3.3 Hardware Parameters
Table 1 summarizes the area and energy consumption of differ-
ent units of the evaluated stochastic systems. We synthesize
logic units (including the stochastic circuit implementations
of the five benchmark applications from Section 3.2), LFSR,
digital comparator, and counter units using Synopsys Design
Compiler vH2013.12 with a 45nm gate library. The Floating-
Gate (FG) analog memory implementation follows [12]. To
model inaccuracy of FG memory, we add Gaussian noise (with
standard deviation from measured data in [12]) to the stored
data.
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Fig. 2: Output inaccuracy of the baseline vs. StochMem.
(a) Robert (b) Median (c) Frame (d) Gamma (e) KDE

Fig. 3: Output images: Baseline (StochMem) on top (bottom).

For a fair evaluation, we assume that the input to both the
baseline designs and StochMem directly comes from analog
image sensors. All designs output a stochastic bitstream. There-
fore, the evaluated systems do not feature an SDC or SAC on
the feedback path from memory (Fig. 1). However, we include
these units in Table 1 for the sake of completeness. SAC area
(energy) cost is 2.3× (17.9×) less than SDC. Accordingly, if
the evaluated systems deployed these units (as explained in
Section 2), StochMem would have shown even larger gains
when compared to the baseline.

4 EVALUATION

Since all three alternative designs operate at the same fre-
quency, they have similar throughput. So, we start the evalu-
ation with a quantitative characterization of the accuracy loss
in the outputs due to the potential read-write discrepancy of the
analog memory incorporated in StochMem. We continue with
energy consumption and conclude with area cost.

4.1 Output Accuracy of StochMem

A known downside of analog memory technologies is the
potential discrepancy between values read and written/stored.
We model the impact of this discrepancy after the accuracy
measurements of a representative analog memory implemen-
tation [12]. All evaluated benchmark applications produce im-
ages as output. Therefore, we capture the accuracy loss in the
output by the average per-pixel deviation (and SSIM [1]) from
the “expected” output for each application as shown in the
bottom row of Fig. 4.

Fig. 2 demonstrates the % output inaccuracy (in terms of
average per-pixel deviation) of StochMem and the baseline
designs for all applications under a stochastic bitstream length
of 1024. The y-axis is normalized to the expected accuracy
values corresponding to the images in the bottom row of Fig. 4.
The two baseline designs evaluated, ConvLFSR and ConvMTJ

(Section 3.1), feature the very same output inaccuracy, as given
by the Conv bar in Fig. 2. We observe that, overall, the degrada-
tion (with respect to Conv) in the output accuracy of StochMem
remains negligible. Only for Gamma, the inaccuracy becomes
around 0.7% worse than Conv. For all other applications, the
inaccuracy worsens by less than 0.15%. On average, the %
output inaccuracy of StochMem is 1.55%; of Conv, 1.36%, with
respect to the expected outputs. Besides, on average SSIM
gets 3.2% worse for different applications. For the worst-case
application, Gamma, SSIM gets 7.3% worse than Conv.

Fig. 3 tabulates the output images for all benchmark ap-
plications under StochMem and Conv. In accordance with the
comparison results from Fig. 2, the difference in output accu-
racy is barely perceivable.

We repeat these experiments for 3 different bitstream
lengths: 128, 256, and 512 bits. The average output inaccuracy of
StochMem with respect to Conv increases from 4.08% to 4.21%,
from 2.63% to 2.77%, and from 1.87% to 2.03%, as the bitstream
length increases from 128 to 512, respectively. The relatively
small degradation in the output inaccuracy is in line with the
experimental outcomes summarized in Fig.s 2 and 3.

4.2 Reduction in Energy Consumption
We next compare and contrast the energy consumption of the
evaluated stochastic designs. In the following, we report the
experimental results for a bitstream length of 1024 without loss
of generality. As Fig. 5 depicts, due to its more energy-efficient
DSC implementation, ConvMTJ can decrease the energy con-
sumption with respect to ConvLFSR significantly, by 45.7% on
average. Introducing analog memory – i.e., StochMem – can
reduce the energy consumption further, by 11.1% on average
over ConvMTJ .
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Fig. 5: Energy consumption normalized to ConvLFSR.
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Fig. 6: Share of energy consumed by different units.

To demonstrate the sources of these energy gains, we quan-
tify the share of energy spent in different units. We expect an
energy-efficient stochastic system to spend most of its energy
budget on computation, rather than on data conversion and
input operand retrieval. Pie charts from Fig. 6 differentiate be-
tween the shares of energy spent in the input layer (which covers
the input operand retrieval and hence constitutes the ADC, if
applicable, and memory units); in the conversion units (which
constitute the ASC or DSC); and in the stochastic logic (which
captures the actual computation). Figures 6a, 6b, and 6c, show
the shares for ConvLFSR, ConvMTJ , and StochMem separately
(Section 3.1). As the charts reveal, share of stochastic logic (con-
version units) increases (decreases) from 31.2% (64.4%) to 53.0%
(37.8%) and to 60.1% (22.1%), as we move from ConvLFSR to
ConvMTJ and to StochMem respectively. StochMem represents
the most energy efficient design, featuring the lowest (highest)
energy share for data conversion (computation), when com-
pared to ConvLFSR and ConvMTJ .

4.3 Reduction in Area
In this section, we evaluate the area cost of each alternative.
Since tailoring ADC and DAC units to each application was out
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TABLE 2: Area in µm2.

Apps Logic ConvLFSR ConvMTJ StochMem
Memory ADC DSC Total Memory ADC DAC ASC Total Memory ASC Total

Robert 339 21

50000

1450 51810 21

50000 16000

75 66435 183 75 597
Median 5382 38 2900 58320 38 150 71570 336 150 5868
Frame 457 17 772 51246 17 60 66534 153 60 670

Gamma 76 35 1156 51267 35 120 66231 306 120 502
KDE 8691 122 6166 64979 122 630 75443 1071 630 10392

input layer conversion units stochastic logic
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Fig. 7: Pie-charts demonstrating share of hardware cost (in
terms of area) across different units.

of the scope of this study, for the baselines (i.e., ConvLFSR and
ConvMTJ ) we deploy an ADC and a DAC unit of minimal area
(which represents the hypothetical best-case in terms of area
cost), even if these units fail short of providing the required
precision. Accordingly, if we were to incorporate realistic ADC
or DAC units (which would likely incur a much higher area
overhead), StochMem (which does not employ any ADC or
DAC) would have shown even larger area savings in compari-
son to the baseline.

Table 2 summarizes the area cost for the evaluated stochastic
designs (columns) for the stochastic benchmark applications
(rows). While ConvMTJ consumes notably less energy than
ConvLFSR (Section 4.2), it requires an extra DAC which in-
creases the area overhead (with respect to ConvLFSR) by 20.0%
on average. On the other hand, StochMem can cut the area cost
significantly, by about 93.7% (with respect to ConvLFSR) on
average, by eliminating the need for costly conversion units.
Only StochMem can deliver area and energy benefits at the
same time.

Fig. 7 depicts a detailed break-down of area consumption
among different units. Similar to Fig. 6, pie charts from Fig. 7
differentiate between the shares of area in the input layer,
conversion units, and stochastic logic, respectively. Only 4.9% of
the area in ConvLFSR goes to the stochastic logic, while the input
layer consumes 90.9%. Stochastic logic in ConvMTJ has even a
smaller share of area (4.1%) when compared to ConvLFSR. On
the other hand, in StochMem, 63.1% of the area goes to stochastic
logic; only 10.8%, to conversion units.

Data conversion in conventional SC systems necessitates
high-overhead units such as LFSRs+comparators, ADCs, or
DACs. StochMem-like SC systems, on the other hand, can elim-
inate or replace these units with lighter-weight counterparts
leading to substantial energy and area savings.

5 CONCLUSION

A challenging artifact of modern technology scaling is growing
uncertainty in design parameters, and therefore, in design func-
tionality. This renders stochastic computing (SC) a particularly
promising paradigm, which represents and processes informa-
tion as quantized probabilities. Numerous stochastic comput-
ing proposals from 1960s onwards, however, focus on stochastic
logic (mainly arithmetic), neglecting memory. Unfortunately,
deploying conventional (digital) memory in a stochastic system
is particularly inefficient due to the difference in data represen-
tations, which can easily incur a significant data conversion
overhead.

In this study, we rethink the memory system design for
stochastic computing to minimize the data conversion over-
head, which can reach 80% of overall hardware cost, consider-

ing image processing as a case study. Analog memory is partic-
ularly promising due to seamless conversion options between
analog and stochastic data representations, despite the potential
loss in data accuracy which stochastic logic can easily mask due
to its implicit fault tolerance. We thus evaluate analog memory
for seamless SC, using a representative stochastic near-sensor
image processing system as a case study. We demonstrate how
such a system can reduce energy consumption and area cost
by up to 52.8% and 93.7%, while keeping the accuracy loss as
incurred by analog memory below 0.7%.
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