
VARIUS-NTV: A Microarchitectural Model to Capture the Increased Sensitivity of
Manycores to Process Variations at Near-Threshold Voltages ‡

Ulya R. Karpuzcu∗, Krishna B. Kolluru†, Nam Sung Kim†, and Josep Torrellas∗
∗University of Illinois Urbana-Champaign †University of Wisconsin Madison
{rkarpu2,torrella}@illinois.edu {kkolluru,nskim3}@wisc.edu

Abstract—Near-Threshold Computing (NTC), where the
supply voltage is only slightly higher than the threshold voltage
of transistors, is a promising approach to attain energy-efficient
computing. Unfortunately, compared to the conventional Super-
Threshold Computing (STC), NTC is more sensitive to process
variations, which results in higher power consumption and
lower frequencies than would otherwise be possible, and
potentially a non-negligible fault rate.

To help address variations at NTC at the architecture level,
this paper presents the first microarchitectural model of process
variations for NTC. The model, called VARIUS-NTV, extends
the existing VARIUS variation model. Its key aspects include:
(i) adopting a gate-delay model and an SRAM cell type that are
tailored to NTC, (ii) modeling SRAM failure modes emerging
at NTC, and (iii) accounting for the impact of leakage in SRAM
models. We evaluate a simulated 11nm, 288-core tiled manycore
at both NTC and STC. The results show higher frequency
and power variations within the NTC chip. For example, the
maximum difference in on-chip tile frequency is ≈2.3x at STC
and ≈3.7x at NTC. We also validate our model against an
experimental chip.

Keywords-Process variations, Near-threshold voltage, Many-
core architectures, SRAM fault models, Power constraints.

I. INTRODUCTION

Power or energy consumption is typically the primary
concern in today’s computer platforms, ranging from dat-
acenters to handhelds. The main reason for their importance
is that CMOS technology has long ago stopped scaling
close to perfectly and, as a result, power density increases
significantly with each technology generation. If we are
to continue delivering scalable computing performance, we
need to find new ways to compute more energy- and power-
efficiently.

One way to attain higher energy efficiency is to reduce
the supply voltage (Vdd) to a value only slightly higher
than a transistor’s threshold voltage (Vth). This environment
is called Near-Threshold Computing (NTC) [7], [13], [28]
— as opposed to conventional Super-Threshold Computing
(STC). Vdd is a most powerful knob because it impacts both
dynamic and static energy super-linearly. Current indications

‡ This work was supported in part by the National Science Foundation
under grant CCF-1012759 and CAREER Award CCF-0953603; DARPA
under UHPC Contract Number HR0011-10-3-0007; DOE ASCR under
Award Number DE-FC02-10ER2599; an IBM Faculty Award; and a gen-
erous gift from AMD.

suggest that NTC can decrease the energy per operation
by several times over STC [7], [13]. A drawback is that
it imposes a frequency reduction, which may be tolerable
through more parallelism in the application. For parallel
loads, since more cores can be running concurrently within
the chip’s power envelope, the result is a higher throughput.

A roadblock for NTC is its higher sensitivity to process
variations — i.e., the deviation of device parameters from
their nominal values. Already in current-technology STC
multicores, process variations result in noticeable differences
in power and performance across the different cores of a
chip [11]. At NTC, due to the low operating Vdd [28], the
same amount of process variations causes a substantially
larger impact on transistor speed and power consumption
variations. Process variations are undesirable because they
result in chips that consume more static power, cycle at lower
frequencies, and can even be faulty.

Process variations should be addressed at multiple levels,
including at the computer architecture level. To confront
variations at the architecture level, we first need models of
process variations and how they affect frequency and power,
at a level of abstraction that is useful to microarchitects.
Such models exist for STC (e.g., [20], [25], [27], [35], [37]).
Unfortunately, none of them is applicable to NTC — NTC
uses new memory structures and requires new delay and
power models.

This paper presents the first microarchitectural model of
process variations for NTC. The model, called VARIUS-NTV,
extends the existing VARIUS variation model [37]. It models
how variation affects the frequency attained and power
consumed by cores and memories in an NTC manycore,
and the timing and stability faults in SRAM cells at NTC.
The key aspects include: (i) adopting a gate-delay model and
an SRAM cell type that are tailored to NTC, (ii) modeling
SRAM failure modes emerging at NTC, and (iii) accounting
for the impact of leakage current in SRAM timing and
stability models.

We evaluate a simulated 11nm, 288-core tiled manycore
at both NTC and STC. Our results show that the expected
process variations induce higher differences in frequency
(f) and power at NTC than at STC. For example, the
maximum difference in tile f within a chip is ≈3.7x at
NTC and only ≈2.3x at STC. We evaluate different core-

tiling organizations in the chip and different configurations
of on-chip Vdd- and f-domains. Our experiments show that
variation management is especially important at NTC. Fi-
nally, we validate our model against an experimental 80-core
prototype chip [11].

This paper is organized as follows: Section II provides a
background; Section III presents our VARIUS-NTV varia-
tion model; Section IV describes the manycore architecture
evaluated; Sections V and VI evaluate VARIUS-NTV for
the architecture; Section VII outlines our initial validation
of VARIUS-NTV; and Section VIII discusses related work.

II. BACKGROUND

A. Near-Threshold Computing (NTC) Basics

NTC refers to an environment where Vdd is set to a
value only slightly higher than the transistors’ Vth [7],
[13], [28]. For current technologies, this roughly corresponds
to Vdd ≈500mV, while the Vdd of conventional (or STC)
environments is ≈1V.

NTC pushes back the manycore power wall by reducing
the energy per operation several times compared to STC —
at the expense of degrading the frequency of operation [13].
The result is that the power is expected to reduce by about
an order of magnitude, allowing more cores to operate
simultaneously for the same manycore power envelope. If
the application has parallelism, this is a major advantage.

Figure 1 compares the scaling of three parameters under
NTC, STC, and as imposed by classical CMOS theory [10]:
supply voltage, transistor delay and power density. The X
axis shows gate length to characterize each technology gen-
eration. Classical scaling relies on scaling Vdd down at every
technology generation by a constant scaling factor κ. Both
Vdd and transistor delay reduce at each generation, giving
rise to a constant power density. Conventional STC scaling
deviates from classical scaling in that the decrease of the
transistor’s Vth has practically stopped to keep subthreshold
leakage under control, which in turn has prevented Vdd

from scaling [19]. A consequence of this fact is that power
density now keeps increasing. As we go from STC to NTC
scaling, the curves experience vertical shifts. Specifically, as
Vdd decreases (Figure 1(a)), power density goes down and
transistor delay increases (Figure 1(b)).

In terms of energy and delay, NTC is close to a sweet
spot. Figure 2 shows the inverse of energy per operation
(labeled as energy efficiency) in MIPS/Watt (left Y axis)
and the transistor delay (right Y axis) as a function of Vdd.
In the NTC region, the energy efficiency is high and the
transistor delay is relatively low. Away from this region,
higher Vdd quickly results in substantially lower energy
efficiency. Lower Vdd, on the other hand, quickly results
in slower transistors.

Classical Scaling STC Scaling NTC Scaling
(a) (b)

1
0

1
0
.
1

1000 100 10
Gate Length (nm)S

u
p
p
l
y

V
o
l
t
a
g
e
(
V
)

1000 100 10
Gate Length (nm)

1e1

1e2

1e3

1e4

1e0

Power
Density

Transistor
Delay

a
r
b
i
t
r
a
r
y

u
n
i
t
s

Figure 1. Parameter scaling under three scenarios [7].

Supply Voltage

L
o
g
(
T
r
a
n
s
i
s
t
o
r

D
e
l
a
y
)

Vth Vdd
STC

E
n
e
r
g
y

E
f
f
i
c
i
e
n
c
y

(
M
I
P
S
/
W
a
t
t
)

~10x

~100x

~2x

~10x

NTC STC

Vdd
NTC

Figure 2. Impact of Vdd on energy efficiency and delay [13].

B. The Impact of Process Variations at NTC

Each technology generation becomes increasingly vulner-
able to process variations, which manifest across the chip as
static, spatial fluctuations in transistor parameters around the
nominal values [2], [3]. Within-die (WID) process variations
are caused by systematic effects (e.g., due to lithographic
irregularities) and random effects (e.g., due to varying
dopant concentrations) [38]. Two key process parameters
affected by variations are Vth and the effective channel
length (Leff). The higher the Vth and Leff variations are,
the higher the variations in transistor switching speed and
static power consumption are. This results in chips with
increased variation in frequency and power consumption
across cores and memories. Note that, in an environment
with variation, the average core has lower frequency than
before. This is because the slower transistors determine the
frequency of the whole core. Moreover, the average core
consumes more static power. The reason is that low-Vth

transistors consume more additional power than high-Vth

ones save.
Unfortunately, transistor delay and power consumption

are more sensitive to variations in Vth and Leff at NTC
than at STC. Consider transistor delay first. At low Vdd,
transistor delay is experimentally found to be more sensitive
to changes in Vth [14]. For example, Figure 3 shows the
transistor delay from the model of Markovic et al. [28] as
Vth varies. For Vdd=0.6V, the difference in delay between

0
0
.
2

0
.
1

0
.
3

0
.
4

0
.
5

0.25 0.30 0.35
Vth(V)T

r
a
n
s
i
s
t
o
r

D
e
l
a
y
(
n
s
)

Vdd = 0.6V

Vdd = 0.4V
Vdd = 0.5V

11nm

Figure 3. Transistor delay for different Vth.

transistors of Vth=0.25V and 0.35V is around 30ps, while
for Vdd=0.4V, it jumps to over 200ps.

Dynamic power is also more sensitive to process varia-
tions at NTC than at STC. The reason is that dynamic power
depends on the frequency and, as we have seen, at low Vdd,
transistor delay (and hence frequency) is more sensitive to
changes in Vth.

C. Modeling Process Variations at STC: VARIUS

There are several microarchitectural models that analyze
the impact of process variations on processors and memories
at a level that is useful to microarchitects (e.g., [20], [25],
[27], [35], [37]). However, these works only apply to STC,
and not to NTC. In this paper, we take one of these models,
namely VARIUS [37], and substantially extend it so that it
applies to NTC. To understand our contributions, we briefly
describe VARIUS.

VARIUS models variations in Vth and Leff . It models
their systematic component by dividing the die into a grid
and assigning to each grid point a ∆Vth and ∆Leff value
as sampled from a multivariate normal distribution with µ=0
and σsys. Moreover, these values have a spatial correlation
that follows a spherical function. With this function, the
correlation between two points only depends on their Eu-
clidean distance. At a distance equal to zero, the correlation
is one. The correlation then decreases with distance and,
at a distance called Correlation Range (φ), the correlation
becomes zero. VARIUS models the random component of
variation with a normal distribution with µ=0 and σran.

VARIUS plugs the Vth and Leff variations in the alpha-
power law (Equation 1) and in the equation for static
power [9]. It then finds the variation in transistor (and gate)
delay and transistor static power, respectively.

tg ∝
Vdd × Leff

µ(Vdd − Vth)α
(1)

To find the distribution of delay of a pipeline stage,
VARIUS proceeds differently depending on whether the

stage has only logic, only an SRAM memory access, or a
combination of both. For logic, it assumes that wire delays
do not suffer from variations and, knowing the number
of gates in a logic path, it uses the gate delay variation
computed above to compute the path delay variation. If
VARIUS knows the distribution of the logic path delays in
the stage (e.g., from Razor data [16]), it can estimate the
distribution of variation-afflicted logic path delays.

For a stage with a memory access, VARIUS models the
6-transistor SRAM cell of Figure 4(a). Using the variation
in transistor delay, it computes the variation in cell read
access time. It assumes that the read access time is more
critical than the write access time. Then, using the cell access
time, it computes the memory line access time. Note that the
pipeline stage also contains some logic, namely the decoder,
the logic at the intersection of word- and bit-line, and the
logic at the sense amplifier. The delay through all this logic
is modeled using the previous logic-stage model and is added
to the memory access delay to find the distribution of total
path delay in the stage.

For pipeline stages that combine both logic and memory
access, VARIUS estimates the delay distribution by appro-
priately weighting the delay of a logic stage and a memory
stage. Finally, the pipeline stage with the longest delays
determines the safe frequency of the processor.

The static power (Psta) in the processor (or memory
module) is found by integrating the Psta of all of its
transistors. VARIUS uses statistical principles to find a
normal distribution for the processor’s Psta as a function
of the normal distributions of the transistors’ Psta.

III. VARIUS-NTV: A MICROARCHITECTURAL MODEL
OF PROCESS VARIATIONS FOR NTC

VARIUS-NTV builds on VARIUS [37] to develop a
microarchitectural model of process variations and resulting
timing errors that is valid at NTC. Much of the general
approach that VARIUS uses still applies to NTC — although
the values of most parameters change. However, there are
several important aspects that require complete redesign.
This is where VARIUS-NTV contributes.

The main contributions of VARIUS-NTV are in four di-
mensions, which address four major limitations of VARIUS:
(i) the VARIUS model for gate delay is based on the alpha-
power law, which is only accurate for Vdd much larger than
Vth; (ii) the VARIUS memory model uses a 6-transistor
SRAM cell, which cannot reliably operate at NTC; (iii) for
SRAM cells, the VARIUS model only considers read access
(or timing) failures, while other memory failure modes
dominate at NTC; and (iv) in the SRAM failure analysis,
VARIUS neglects the impact of leakage while, at NTC, the
impact of leakage is substantial.

In this section, we present the main contributions of
VARIUS-NTV.

WL

BR

AXL AXR

NL NR

PL PR

(a)
BL

VL VR
AXL AXR

NL NR

PL PR

(b)

VL VR

NRD

R
e
a
d

B
L
(
i
n
v
e
r
t
e
d
)Read WL

AXRD

Write WL

W
r
i
t
e

B
L

W
r
i
t
e

B
R

Figure 4. SRAM cell architecture: conventional 6-transistor cell (a) and 8-transistor cell (b). VR and VL are the voltages at
the nodes indicated, which are referred to as nodes R and L, respectively.

A. Gate Delay

To model the gate delay (tg), VARIUS uses the alpha-
power law (Equation 1), where α is a process parameter
capturing carrier velocity saturation, and µ identifies the
carrier mobility as a function of the temperature (T). This
equation does not model the NTC region accurately. There
are alpha-power law variants [4], [6], [21], [31] that attempt
to extend the model to the subthreshold region. Usually, they
come with an increased number of fitting parameters that
have no direct physical interpretation. Furthermore, that they
cover the subthreshold region does not necessarily imply that
they model NTC properly.

Consequently, in VARIUS-NTV, we use the EKV-
based [15] model proposed by Markovic et al. [28]. The
formula for the on-current is given in Equation 2, where vt

is the thermal voltage and n a process-dependent parame-
ter determined by subthreshold characteristics. The carrier
mobility’s T dependence is µ ∝ T−1.5.

I ∝ µ/Leff × n× v2
t × ln2(e

V gs−V th
2×n×vt + 1) (2)

The resulting gate delay, obtained from CV/I, is shown
in Equation 3. The equation captures the variation in gate
delay as a function of the variation in Vth and Leff . Since
the EKV model covers all regions of operation, Equation 3 is
equally valid at STC and NTC. In all cases, Vth is a function
of Vdd and temperature as per Equation 4, where Vth0 , Vdd0

and T0 are the nominal values of these parameters, and kT

and kDIBL represent constants of proportionality capturing
the impact of T and DIBL (Drain Induced Barrier Lowering)
on Vth, respectively.

tg ∝
Vdd × Leff

µ× n× v2
t × ln2(e

V dd−V th
2×n×vt + 1)

(3)

Vth = Vth0 + kDIBL(Vdd − Vdd0) + kT (T − T0) (4)

B. SRAM Cell

VARIUS uses the conventional 6-transistor cell shown
in Figure 4(a). This cell requires careful sizing of the
transistors, since it poses conflicting requirements on the
AXR and AXL access transistors to prevent both read and
write failures. While such a design is typical at STC, it
becomes very hard to use at NTC, where transistors are
more sensitive to process variations. One way to address
this problem is to power SRAMs at a higher Vdd than the
logic. Unfortunately, this approach is costly, since cache
memory and logic blocks are often highly interleaved in
the layout. Moreover, it requires extra voltage regulators in
the platform, and results in additional design, validation, and
testing issues. Finally, it is hardly scalable: as we move to
smaller technologies, the relative difference between the safe
SRAM and logic voltages increases, diminishing the power
reduction benefit of NTC.

Consequently, VARIUS-NTV uses the 8-transistor cell of
Figure 4(b) [8], [29]. This cell is easier to design reliably
because it decouples the transistors used for reading (AXRD

and NRD) and those for writing (the rest). Compared to
the 6-transistor cell, read and write timing margins can
be independently optimized with marginal increase in cell
area [8]. In addition, of the five types of SRAM failure
modes (read timing, read upset, write stability, write timing,
and hold) [30], this cell eliminates read upset failures
because the cell’s internal nodes are decoupled from the read
bit-line (BL).

C. Memory Failure Modes

While VARIUS only considers read timing failures,
VARIUS-NTV models all of the SRAM failure modes (ex-
cept read upsets, which cannot occur in the 8-transistor cell
because a read cannot flip the cell contents by construction).
We now describe how VARIUS-NTV models them.

1) Hold Failure: In a cell storing 0 (VR = 0, VL = 1), at
low Vdd, the voltage VL decreases by construction. This is

because, when the cell is not accessed, although NL, PR,
and the access transistors are off, there is leakage through
NL and AXL. A hold failure occurs when the leakage
current through the NL and AXL transistors in Figure 4(b)
reduces VL below the VSWITCH of the PR−NR inverter
while the cell is not being accessed. At that point, the cell’s
state is lost.

To model these failures at a given Vdd, VARIUS-NTV
uses Kirchhoff’s current law to compute VL and VSWITCH

at Vdd. VL is extracted from IPL(VL) − INL(VL) −
IAXL(VL) = 0, where

IPL(VL) ∝ µ/Leff × n× v2
t × ln2(e

V dd−V th
2×n×vt + 1)

INL(VL) ∝ µ/Leff × T 2 × e−
V th

n×vt

IAXL(VL) ∝ µ/Leff × T 2 × e−
V th

n×vt

(5)

and where Vth in each equation is expressed as a (different)
function of VL.

Similarly, VSWITCH is extracted from IPR(VSWITCH)−
INR(VSWITCH)+IAXR(VSWITCH) = 0 for the PR−NR
inverter when VIN = VOUT [30].

The hold failure probability of a cell is PCell,Hold =
P [VL(Vdd) − VSWITCH(Vdd) < 0]. Then, the hold fail-
ure probability of a line is PLine,Hold = 1 − (1 −
PCell,Hold)line size, where line size is the number of cells
per line, and 1−(1−PCell,Hold)line size gives the probability
that at least one cell fails. A line is faulty if at least one of
its cells is faulty. The failure probability of cells is assumed
independent in this case.

To avoid hold failures, the minimum allowable
supply voltage, VddMIN,Cell, is obtained by solving
VL(VddMIN,Cell) = VSWITCH(VddMIN,Cell) under
variation. Then, VddMIN,Line = max(VddMIN,Cell) for all
the cells in the line.

2) Write Stability Failure: Without loss of generality,
we focus on a cell that stores a 0 (VR=0 and VL=1).
VARIUS-NTV computes the voltage (VLW) that node L
reaches when the write BL is set to 0 (where BR = 1)
and the write duration is extended to infinity. If the value
is above the switching threshold of the PR −NR inverter
(VSWITCH), then a write failure occurs.

The VLW distribution is computed using Kirchhoff’s
current law at node L, from IPL(VLW) − INL(VLW) −
IAXL(VLW) = 0. The VSWITCH distribution is extracted
as explained above in the hold failure analysis.

In all cases, transistor parameters are subjected to the vari-
ation model. Finally, the per-cell probability of write stability
failure becomes PCell,WStab = P [VLW − VSWITCH > 0].
A memory line suffers from write stability failure if there is
at least one cell in the line suffering from it.

3) Read Timing Failure: VARIUS-NTV computes the
random variable that captures the time taken to generate a

detectable voltage drop on the read bit-line as

DV arReadCell ∝
1

IAXRD
+

∑
ISTA

(6)

where IAXRD
is the bit-line discharge current through the

AXRD transistor in Figure 4(b), and
∑

ISTA is the leakage
over all of the cells attached to the bit-line. To calculate the
distribution of 1/IAXRD

, first, the source voltage of AXRD,
VRD, is extracted by solving the Kirchhoff’s law at this node,
from IAXRD

(VRD) = INRD
(VRD). When reading from

a cell storing 1 (VR=1 and VL=0), the transistor currents
follow from:

IAXRD
∝ µ/Leff × n× v2

t × ln2(e
V dd−VRD−V th

2×n×vt + 1)

INRD
∝ µ/Leff × n× v2

t × ln2(e
V dd−V th
2×n×vt + 1)

(7)
where Vth in each equation is expressed as a (different)
function of VRD.

Then, the probability distribution of DV arReadCell can
be attained by applying those of Vth and Leff given by
the variation model to 1

IAXRD(VRD)+
P

IST A
. Following the

VARIUS methodology, the maximum of DV arReadCell over
all of the cells in a line is the time to read an entire memory
line DV arReadLine. Finally, the probability of read access
failure (PReadAccess) is P [DV arReadLine > tREAD], where
tREAD is the designated read duration.

4) Write Timing Failure: Given a cell without write
stability failure, VARIUS-NTV models a write timing failure
by computing DV arWriteCell. This is the time that node L
takes to reach the switching threshold (VSWITCH) of the
PR-NR inverter. It is:

DV arWriteCell ∝
1
IL

=
∫ VSW IT CH

V dd

dvL/iL(vL)

iL(vL) = iPL(vL)− iNL(vL)− iAXL(vL)
(8)

where IL is the discharge current at node L during the write,
obtained following [30]. iL(vL) is a function of Gaussian
random variables Vth and Leff under process variation. It
is obtained with Kirchhoff’s current law.

After obtaining the probability distribution for
DV arWriteCell, we compute the distribution of the
maximum of DV arWriteCell over all of the cells in
a line. Finally, the probability of write timing failure
(PWriteT iming) is P [DV arWriteLine > tWRITE], where
tWRITE is the designated write duration.

D. Impact of Leakage

At NTC, the magnitude of the leakage current (Ioff),
decreases when compared to STC. However, the on-current
(Ion), decreases even more due to lower Vdd. Hence, the
relative impact of Ioff increases. Consequently, unlike VAR-
IUS, VARIUS-NTV takes into account the impact of the
leakage current on SRAM timing and stability, as we have
seen in previous sections. As part of Ioff , we only consider

subthreshold leakage; we exclude gate leakage because we
assume high-K metal gate devices like the ones currently in
use.

IV. MANYCORE ARCHITECTURE MODELED

To evaluate VARIUS-NTV, we model an 11nm manycore
architecture that operates at NTC. The manycore is orga-
nized in tiles (36 in our default configuration) for ease of
design (Figure 5). Each tile has a tile memory and several
cores (8 in our default configuration), each with a per-
core memory. Each core is a single-issue engine where
memory accesses can be overlapped with each other and
with computation. Each tile memory is a bank of a shared
L2 cache, while the per-core memories are L1 caches. Data
in the L1 caches is kept coherent with a directory-based
MESI coherence protocol where each pointer corresponds
to one tile. The cores are connected with a bus inside each
tile and with a 2D torus across tiles. Table I shows the default
architecture and technology parameters. In the table, all of
the parameters that are not labeled with STC refer to the
NTC environment.

Core + Private Memory Tile

Tile Memory

0.83mm

0
.
6
7
m
m 1
.
9
9
m
m

Figure 5. Manycore architecture used to evaluate
VARIUS-NTV.

We evaluate an STC version of the manycore and three
NTC versions of it. The three NTC versions differ based
on the use of voltage and frequency domains, as listed in
Table II.

The technology parameters used in Table I are derived
from ITRS [22] and projected trends from industry. Every
single experiment is repeated for 100 chips with different
variation profiles, and we present the average. More samples
beyond 100 do not change the results noticeably.

V. EXPERIMENTAL SETUP

We evaluate VARIUS-NTV by using it to estimate the
performance and power consumption of the manycore archi-
tecture of Section IV. We interface Pin [26] over a user-level
pthreads library to the SESC [34] cycle-level architectural
simulator. SESC estimates both execution time and energy
consumed. The energy analysis relies on McPAT [24] scaled
to 11nm. An updated version of HotSpot takes the detailed

System Parameters
Technology node: 11nm PMAX = 100W
Num. Cores: 288 TMAX = 100oC
Num. Tiles: 36 (8 cores/tile) Chip area ≈ 20mm x 20mm

Variation Parameters
Correlation range: φ = 0.1 Sample size: 100 chips
Total (σ/µ)V th = 20%; equal Total (σ/µ)Leff = 10%; equal
contrib. systematic & random contrib. systematic & random

Technology Parameters
V ddNOM at STC = 0.77V V ddNOM at NTC = 0.54V
V thNOM at STC = 0.30V V thNOM at NTC = 0.33V
fNOM at STC = 3.3GHz fNOM at NTC = 1.0GHz
finterconnect at STC = 2.5GHz finterconnect at NTC = 0.8GHz
kT = −1.5mV/K; n = 1.5 kDIBL = −150mV/V

Architectural Parameters
Per-core memory: 64KB WT, Tile memory: 2MB WB,
4-way, 2ns access, 64B line 16-way, 10ns access, 64B line

On-chip network: bus inside tile Directory-based MESI
and 2D-torus across tiles Avg. memory round-trip access

Crossing a f domain boundary: 2ns time (before contention): ≈80ns

Table I
ARCHITECTURE AND TECHNOLOGY PARAMETERS.

Name NTC Manycore Configuration
MVMF Multiple Vdd and multiple f domains (one per tile).
SVMF Single chip-wide Vdd domain and one f domain per tile.
SVSF Single chip-wide Vdd and f domains.

Table II
CONFIGURATIONS FOR THE NTC MANYCORE.

layout of the chip and models the temperature, in turn affect-
ing the leakage energy in a feedback loop. VARIUS-NTV
is implemented in R [40].

In our experiments, we run multi-programmed workloads
that contain some or all of the following 8 PARSEC applica-
tions: blackscholes, ferret, fluidanimate, raytrace, swaptions,
canneal, dedup, and streamcluster. Each application can run
with 4, 8 or 16 threads. For each application, we measure
the complete parallel section (called Region of Interest or
ROI) running the simsmall input data set.

VI. EVALUATION

In our evaluation, we first describe how we set the
operating voltages and frequencies of the manycore, then
assess the impact of process variations in NTC and STC
environments, and then explore some design parameters.

A. Computing the Operating Point

To determine the operating Vdd and f at NTC, our model
starts with SRAM blocks. Our goal is to estimate VddMIN ,
the minimum sustainable Vdd. It is set by hold and write
stability failure analyses.

Our model first finds the minimum Vdd needed to avoid
hold failures, namely Vdd,hold. The Vdd,hold distribution is
attained by solving VL(Vdd,hold) = VSWITCH(Vdd,hold),
where the former is the voltage at node L (Figure 4(b)), while

the latter is the switching threshold of the PR-NR inverter.
The chosen Vdd,hold value is obtained at the 3σ of the
distribution — after approximating to a normal distribution.
Our model then proceeds with write stability failure analysis,
to guarantee that the chosen Vdd,hold also avoids write
stability failures. At this step, a higher Vdd may emerge, if
the write stability failure rate at Vdd,hold remains higher than
the target tolerable error rate. The resulting Vdd is VddMIN .

Once VddMIN is picked, VARIUS-NTV considers timing
issues in order to set the f. The selected f is determined by the
slowest component of the chip, based on our model’s analy-
sis of path delay distributions at VddMIN . For logic blocks,
the analysis follows that of VARIUS [37]. For SRAMs,
it can be shown that, for the parameters considered, write
timing requires longer delays than read timing for the same
Vdd. This is consistent with the work of Abella et al. [1].
Hence, write timing analysis determines the path delays in
each SRAM block. To determine the maximum path delay,
VARIUS-NTV approximates the path delay distributions to
normal ones and picks the 3σ cut-off point. This maximum
delay determines the f at VddMIN .

B. Impact of Process Variations at NTC and STC

To examine the impact of WID process variations on the f
and power consumption at NTC and STC, we consider three
types of on-chip blocks separately: logic (the core pipelines),
small memories (the per-core local memories) and large
memories (the per-tile memories). We do this because they
have different critical path distributions. In all cases, the f
for a block is determined by finding the distribution of the
path delays in the block at VddNOM and then picking, as the
period for the block, the delay at the 3σ of the distribution.
The power of the block is the sum of the static and dynamic
components.

We consider intra-tile variations first. In each tile, we
compute the ratio of the frequencies of the fastest and
slowest pipelines in the tile. We then take the average of
the ratios across all tiles (Intra Pipe). We repeat the same
process for local memories in the tile to calculate Intra Mem.
Finally, for the power consumption, we take the power ratio
of highest to lowest consuming pipelines, and highest to
lowest consuming local memories, to compute Intra Pipe
and Intra Mem, respectively.

For inter-tile variations, we measure the ratio of the
frequencies of the fastest and slowest tile memories on
chip (Inter Mem). We then consider the frequency that
each tile can support (the lowest frequency of its pipelines,
local memories and tile memory), and compute the ratio
of the frequencies of the fastest and slowest tiles (Inter
Pipe+Mem). Finally, we repeat the computations for power
(Inter Mem and Inter Pipe+Mem). We report the mean of
the experiments for 100 chips.

Figure 6 compares these ratios for NTC and STC. Fig-
ure 6(a) shows the f ratios. We observe that the frequency

ratio of the fastest to the slowest blocks is substantially
higher at NTC than at STC — for the same process variation
profile. For example, Inter Pipe+Mem at NTC is 3.7, while
it is only 2.3 at STC (Figure 6(a)). This is because a low
Vdd amplifies the effect of process variations on delay.

Figure 6(b) shows the power ratios. The variation in
total power also increases at NTC. However, the relative
difference in power ratios between NTC and STC is gener-
ally smaller than the relative difference in frequency ratios.
The reason is that power includes both dynamic and static
power, and the ratios for static power are the same for NTC
and STC. Consequently, the relative difference in power
ratios is smaller. Still, the absolute difference is significant.
Consequently, the chip is more heterogeneous at NTC.

Intra Pipe Intra Mem Inter Mem Inter Pipe+Mem

M
ax

/M
in

 R
at

io
 fo

r F
re

qu
en

cy
0

1
2

3
4

5 STC
NTC

M
ax

/M
in

 R
at

io
 fo

r F
re

qu
en

cy

Intra Pipe Intra Mem Inter Mem Inter Pipe + Mem

(a) Frequency

Intra Pipe Intra Mem Inter Mem Inter Pipe+Mem

M
ax

/M
in

 R
at

io
 fo

r P
ow

er
0

5
10

15
20

25

STC
NTC

M
ax

/M
in

 R
at

io
 fo

r P
ow

er

Intra Pipe Intra Mem Inter Mem Inter Pipe + Mem

(b) Power

Figure 6. Impact of variations at NTC and STC.

These experiments have used a fixed, safe VddNOM for
the whole chip. In reality, process variations in the SRAM
cells result in each tile supporting a different VddMIN , the
minimum sustainable Vdd to avoid failures. Such VddMIN

values are lower than VddNOM for many tiles. Figure 7
shows the distribution of the VddMIN values for all the tiles
in a sample chip at NTC. The data is shown as a histogram.
We can see that the VddMIN values of tiles in a chip vary

along a significant 0.46-0.58V range.

VddMIN (V)
0.46 0.50 0.54 0.58

0
2

4
6

8
10

12
N

um
be

r o
f T

ile
s

VddMIN (V)

Figure 7. Values of VddMIN for all the tiles of a representative
chip at NTC.

C. Design Space Exploration

A promising way to combat the increased impact of
process variations is to rely on fine grain, per-tile Vdd and
f tuning. To quantify the effect, we compare the manycore
configurations of Table II across different tile granularities
ranging from 4 cores per tile to 16 cores per tile. MVMF
is an environment with a Vdd and an f domain per tile;
SVMF has a single Vdd domain in the chip but one f domain
per tile; finally, SVSF characterizes a variation-oblivious
environment, with a single Vdd and f domain per chip.

Figure 8 compares the performance (in normalized MIPS)
of our 288-core NTC chip for the different environments.
We consider two workload scenarios: one where we use all
the tiles in the chip (Figure 8(a)) and one where we only
use about half of the tiles (Figure 8(b)). Specifically, we use
128 out of the 288 cores and leave the others idle. Figure 9
repeats the analysis for STC.

4 8 16
Cores per Tile

 N
or

m
al

iz
ed

 M
IP

S
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

MVMF
SVMF
SVSF

(a) 100% Use

4 8 16
Cores per Tile

 N
or

m
al

iz
ed

 M
IP

S
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

MVMF
SVMF
SVSF

(b) ≈ 50% Use

Figure 8. Performance of our 288-core chip at NTC with
different tile sizes and configurations. The charts correspond
to using all the tiles (a) and using approximately only half
(b).

In each figure, we keep the total number of cores in
the chip constant, and perform a sensitivity analysis of

different tile granularities: 4, 8 or 16 cores per tile. In each
case, the workload consists of 4-threaded, 8-threaded, or 16-
threaded parallel applications, respectively, from PARSEC.
Each application uses one tile, and we report the average
performance of the workload in MIPS. In each plot, to
make the comparison fair, the power consumed by all of the
environments is kept constant. In MVMF, the per-domain
Vdd and f are set as per Section VI-A. Specifically, each tile
runs at the tile-specific VddMIN , and at the maximum f that
it can support at this voltage. In SVMF, all the tiles in the
chip run at the maximum of the VddMIN s across all tiles.
The per-tile frequencies are increased accordingly. Finally, in
SVSF, the chip uses the same voltage as SFMV but it runs
at the chip-wide minimum of per-tile frequencies. Recall
that the VddMIN of a tile represents the maximum VddMIN

across its components, where the f of a tile corresponds to the
minimum f across its components at the designated tile Vdd.
The applications are assigned to tiles according to highest
average IPC application to highest f tile. After the MIPS of
each environment is computed, it is normalized to that of
MVMF for an 8-core tile in each plot.

4 8 16
Cores per Tile

 N
or

m
al

iz
ed

 M
IP

S
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

MVMF
SVMF
SVSF

(a) 100% Use

4 8 16
Cores per Tile

 N
or

m
al

iz
ed

 M
IP

S
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

MVMF
SVMF
SVSF

(b) ≈ 50% Use

Figure 9. Performance of our 288-core chip at STC with
different tile sizes and configurations. The charts correspond
to using all the tiles (a) and using approximately only half
(b).

Starting with the fully-utilized chip (Figure 8(a)), we
observe that SVMF only attains 59%, 71%, and 81% MIPS
of MVMF, for 4-core, 8-core, and 16-core tiles, respectively.
This is because it does not exploit the multiple Vdd domains
of MVMF. The difference between the two bars gets larger as
the tile granularity becomes finer, as MVMF tracks core-to-
core variations closer. SVSF in this case only reaches 32%,
46%, and 61% MIPS of MVMF, for 4-core, 8-core, and 16-
core tiles, respectively. As the tile granularity increases, the
differences between the different configurations diminish.

Figure 8(b) repeats the experiment when only ≈ half of
the tiles are busy. For MVMF, we pick the 32, 16, and 8
most MIPS/W-efficient tiles for 4-, 8-, and 16-cores per tile
granularity, respectively, and then assign the applications of
higher IPC to the faster tiles in turn. The resulting power

consumption is the power budget that we allow to the other
environments. The other environments pick their 32, 16 or 8
most MIPS/W-efficient tiles that satisfy the budget. We see
similar trends as in Figure 8(a) except that the drop in MIPS
is not as large. The reason is that each environment now
picks a subset of energy-efficient tiles — leaving energy-
inefficient ones idle.

Finally, in Figure 9, the experiments are repeated for STC.
For STC, MVMF and SVMF become equivalent, since the
nominal STC Vdd is high enough to produce a safe operating
point across all of the tiles. There is no need to set the Vdd

of some tiles higher or lower depending on their VddMIN .
Apart from this, while generally the same trends apply as
under NTC operation, the MIPS loss as incurred by SVSF
operation is much less.

VII. MODEL VALIDATION

Our initial validation of VARIUS-NTV involves a valida-
tion of the parameters used and a comparison to the results
reported in an experimental chip.

1) Validation of Model Parameters: VARIUS-NTV builds
on the VARIUS variation and timing error model which,
as explained in [37], was calibrated with experimental data
from Friedberg et al. [17] and Razor [16], and validated
with error rates in logic and memory [37]. To validate
the new VARIUS-NTV formulas, we start with Vth, which
is a complex function of Vdd, Leff, and other technology
parameters. We obtained a version of the 12nm Predictive
Technology Model (PTM) from Yu Cao from Arizona State
University [32]. We compared the Vth values generated by
VARIUS-NTV to those generated by the BSIM analytical
model [5], and HSPICE. The Vth values from VARIUS-NTV
closely track those from both HSPICE and BSIM with less
than 1% error over the designated Vdd range. The main
source of discrepancy is the accuracy of modeling the DIBL
effect.

We then used Vth values from VARIUS-NTV to generate
values for gate delay and static power. We compared the
values to HSPICE measurements of a FO4 inverter chain.
The delay and static power scaling trends of VARIUS-NTV
follow HSPICE within a 10% of error for our Vdd range.

2) Comparison to Silicon Measurements: To further val-
idate VARIUS-NTV, we compare its outputs to the varia-
tion measurements from Intel’s 80-Core TeraFLOPS proces-
sor [11]. To this end, we experimented with a 12mm×20mm
chip that mimicks the TeraFLOPS processor, where each
core (which they call tile) has 2 floating point units, a 3KB
instruction memory, and a 2KB data memory. According to
the chip micrograph, the chip organizes the 80 cores into 10
rows and 8 columns. To match their technology parameters,
we adapted VARIUS-NTV to a 65nm CMOS technology
with a VddNOM of 1.2V.

Figure 8 in [11] depicts the measured variation in core
frequency (fMAX) for the 80 cores of a single die at 50oC

and Vdd=0.8V. At 0.8V, the authors report a ratio of highest
core frequency to lowest core frequency equal to 1.62.

We repeat the conditions in which these measurements
were taken to the extent that we can. We generate
VARIUS-NTV frequency maps for 100 sample dies, as-
suming (σ/µ)V th = 5% for the 65nm technology, with an
equal contribution of random and systematic variation. The
histogram of the resulting ratios of highest core frequency
to lowest core frequency as generated by VARIUS-NTV
is shown in Figure 10(a). As shown in the histogram,
VARIUS-NTV produces an average value of ≈1.48 for the
ratio of frequencies, with a 95% confidence interval of
(1.452, 1.483).

Further, Figure 10(b) shows the frequency distribution of
the cores in one of the dies, as generated by VARIUS-NTV
at 0.8V. For this particular die, the ratio of highest core
frequency to lowest core frequency is ≈1.4. This figure is
very similar to Figure 8 in [11].

f ratio of fastest to slowest core

N
um

be
r

of
 d

ie
s

1.3 1.4 1.5 1.6 1.7

0
5

10
15

20
25

(a)

●

●
●

●

●

●●
●

●●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

0 20 40 60 80

2.
6

2.
8

3.
0

3.
2

3.
4

Core Index

f(
G

H
z)

(b)

Figure 10. Data generated by VARIUS-NTV that replicates
the data presented in [11]. Chart (a) shows a histogram of
the ratios of highest core frequency to lowest core frequency
over 100 dies. Chart (b) shows the frequency map for one
of the sample dies.

Recall that the 80-Core processor does not represent an
NTC design. However, our validation experiments are run
at the relatively low 0.8V (where the nominal Vdd at 65nm
is 1.2V). No further measured data is provided in [11]
below 0.8V. To our knowledge, there is no detailed variation
characterization of any NTC chip that is available.

VIII. RELATED WORK

There are several microarchitectural models that analyze
the impact of process variations on the frequency and power
of processors and memories at a level that is useful to
microarchitects. They include the work of Humenay et
al. [20], Liang and Brooks [25], Marculescu and Talpes [27],
Romanescu et al. [35], and Sarangi et al. [37] (on which this
work builds) among others. As indicated before, these works
only apply to STC, and not to NTC.

A few papers include a good description of the challenges
and issues at NTC [7], [13], [28].

There are many other works that are related to evaluating
the impact of process variation, mostly in STC environments.
We list some of the most relevant here. Humenay et al.
demonstrate that WID process variations lead to consider-
able performance and power consumption asymmetry among
the cores in a CMP [20]. To minimize such asymmetry,
they propose per-core ABB and ASV. Donald and Martonosi
analyze core-to-core power variations in a CMP due to WID
variation [12]. They propose to turn off cores when they
consume excessive leakage power in order to maximize
the chip-wide performance/power. Herbert and Marculescu
examine the impact of core size on the throughput of a
fixed area chip in the presence of WID variations [18].
They find that smaller cores (thus more cores per chip)
running at independent f lead to higher throughput than
larger ones. Li and Martinez propose to optimize the number
of active cores and their Vdds and fs jointly while running
a workload on a CMP [23] where they apply DVFS chip-
wide rather than independently per core. In [33], Rangan
et al. propose a throughput driven scheduling scheme to
guarantee that a variation-afflicted chip performs very close
to a perfect chip operating at the average frequency of
the former. Rotem et al. [36] analyze the impact of single
and multiple voltage and frequency domains in a CMP
environment, considering power delivery limitations. They
propose a clustered topology to maximize performance. The
authors ignore the impact of variation. Finally, Teodorescu
and Torrellas [39] examine the impact of process scheduling
in the context of a manycore with variation. They provide
heuristics to schedule the workload for performance or for
power efficiency. It would be interesting to reproduce these
works in the context of NTC.

IX. CONCLUSION

To help confront process variations at the architecture
level at NTC, this paper has presented the first microarchi-
tectural model of process variations for NTC. The model,
called VARIUS-NTV, extends an existing variation model for
STC. It models how variation affects the frequency attained
and power consumed by cores and memories in an NTC
manycore, and the timing and stability faults in SRAM cells
at NTC. The key aspects include: (i) adopting a gate-delay
model and an SRAM cell type that are tailored to NTC,
(ii) modeling SRAM failure modes emerging at NTC, and
(iii) accounting for the impact of leakage in SRAM failure
models.

We evaluated a simulated 11nm manycore at both NTC
and STC. Our results showed that the expected process
variations induce higher differences in f and power at NTC
than at STC. For example, the maximum difference in tile
f within a chip is ≈3.7x at NTC and only ≈2.3x at STC.
We evaluated different core-tiling organizations in the chip
and different configurations of on-chip Vdd- and f-domains.
Our experiments showed that variation management is more

crucial at NTC. Finally, we validated our model against an
experimental 80-core prototype chip.

REFERENCES

[1] J. Abella, P. Chaparro, X. Vera, J. Carretero, and A. Gonzalez.
High-Performance Low-Vcc In-Order Core. In International
Symposium on High Performance Computer Architecture,
January 2010.

[2] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L.
Ji, S. R. Nassif, E. J. Nowak, D. J. Pearson, and N. J. Rohrer.
High-Performance CMOS Variability in the 65-nm Regime
and Beyond. In IBM Journal of Research and Development,
July/September 2006.

[3] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi,
and V. De. Parameter Variations and Impact on Circuits and
Microarchitecture. In Design Automation Conference, June
2003.

[4] K. A. Bowman, B. L. Austin, J. C. Eble, X. Tang, and
J. D. Meindl. A Physical Alpha-power Law MOSFET model.
In International Symposium on Low Power Electronics and
Design, August 1999.

[5] BSIM. http://www-device.eecs.berkeley.edu/˜bsim/BSIM4.

[6] Y. Cao and L. T. Clark. Mapping Statistical Process Varia-
tions Toward Circuit Performance Variability: An Analytical
Modeling Approach. In Design Automation Conference, June
2005.

[7] L. Chang, D. J. Frank, R. K. Montoye, S. J. Koester, B. L.
Ji, P. W. Coteus, R. H. Dennard, and W. Haensch. Practi-
cal Strategies for Power-Efficient Computing Technologies.
Proceedings of the IEEE, February 2010.

[8] L. Chang, R. Montoye, Y. Nakamura, K. Batson, R. Eick-
emeyer, R. Dennard, W. Haensch, and D. Jamsek. An 8T-
SRAM for Variability Tolerance and Low-Voltage Operation
in High-Performance Caches. Journal of Solid-State Circuits,
April 2008.

[9] Y. Cheng and C. Hu. MOSFET Modeling and Bsim3 User’s
Guide. Kluwer Academic Publishers, 1999.

[10] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and
A. LeBlanc. Design of Ion-Implanted MOSFETs with Very
Small Physical Dimensions. In Journal of Solid-State Cir-
cuits, October 1974.

[11] S. Dighe, S. Vangal, P. Aseron, S. Kumar, T. Jacob, K. Bow-
man, J. Howard, J. Tschanz, V. Erraguntla, N. Borkar, V. De,
and S. Borkar. Within-Die Variation-Aware Dynamic-Voltage-
Frequency-Scaling With Optimal Core Allocation and Thread
Hopping for the 80-Core TeraFLOPS Processor. Journal of
Solid-State Circuits, January 2011.

[12] J. Donald and M. Martonosi. Power Efficiency for Variation-
tolerant Multicore Processors. In International Symposium on
Low power Electronics and Design, October 2006.

[13] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester,
and T. Mudge. Near-Threshold Computing: Reclaiming
Moore’s Law Through Energy Efficient Integrated Circuits.
Proceedings of the IEEE, February 2010.

[14] M. Eisele, J. Berthold, D. Schmitt-Landsiedel, and
R. Mahnkopf. The Impact of Intra-die Device Parameter
Variations on Path Delays and on the Design for Yield of
Low Voltage Digital Circuits. Transactions on VLSI Systems,
December 1997.

[15] C. C. Enz, F. Krummenacher, and E. A. Vittoz. An Analytical
MOS Transistor Model Valid in All Regions of Operation
and Dedicated to Low-voltage and Low-current Applications.
Analog Integrated Circuits Signal Processing, 1995.

[16] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham,
C. Zeisler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge.
Razor: A Low-Power Pipeline Based on Circuit-Level Timing
Speculation. In International Symposium on Microarchitec-
ture, December 2003.

[17] P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, and
C. Spanos. Modeling Within-die Spatial Correlation Effects
for Process-design Co-optimization. In International Sympo-
sium on Quality of Electronic Design, March 2005.

[18] S. Herbert and D. Marculescu. Characterizing Chip-
multiprocessor Variability-tolerance. In Design Automation
Conference, June 2008.

[19] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and
K. Bernstein. Scaling, Power, and the Future of CMOS. In
International Electron Devices Meeting, December 2005.

[20] E. Humenay, D. Tarjan, and K. Skadron. Impact of Process
Variations on Multicore Performance Symmetry. In Confer-
ence on Design, Automation and Test in Europe, April 2007.

[21] H. Im. Physical insight into fractional power dependence of
saturation current on gate voltage in advanced short channel
MOSFETS (alpha-power law model). In International Sym-
posium on Low Power Electronics and Design, August 2002.

[22] International Technology Roadmap for Semiconductors
(ITRS). 2009 Update.

[23] J. Li and J. Martinez. Dynamic power-performance adaptation
of parallel computation on chip multiprocessors. In Interna-
tional Symposium on High-Performance Computer Architec-
ture, February 2006.

[24] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. McPAT: An integrated power, area,
and timing modeling framework for multicore and manycore
architectures. In International Symposium on Microarchitec-
ture, December 2009.

[25] X. Liang and D. Brooks. Mitigating the impact of process
variations on processor register files and execution units.
In International Symposium on Microarchitecture, December
2006.

[26] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
Building customized program analysis tools with dynamic
instrumentation. In Conference on Programming Language
Design and Implementation, June 2005.

[27] D. Marculescu and E. Talpes. Variability and energy aware-
ness: A microarchitecture-level perspective. In Design Au-
tomation Conference, June 2005.

[28] D. Markovic, C. C. Wang, L. P. Alarcon, T.-T. Liu, and
J. M. Rabaey. Ultralow-power design in near-threshold region.
Proceedings of the IEEE, February 2010.

[29] Y. Morita, H. Fujiwara, H. Noguchi, Y. Iguchi, K. Nii,
H. Kawaguchi, and M. Yoshimoto. An Area-Conscious Low-
Voltage-Oriented 8T-SRAM Design under DVS Environment.
In Symposium on VLSI Circuits, June 2007.

[30] S. Mukhopadhyay, H. Mahmoodi, and K. Roy. Modeling of
failure probability and statistical design of SRAM array for
yield enhancement in nanoscaled CMOS. Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
December 2005.

[31] M. Orshansky, J. Chen, and C. Hu. Direct sampling method-
ology for statistical analysis of scaled CMOS technologies.
Transactions on Semiconductor Manufacturing, November
1999.

[32] Predictive Technology Model (PTM). http://ptm.asu.edu/.

[33] K. Rangan, M. Powell, G.-Y. Wei, and D. Brooks. Achieving
uniform performance and maximizing throughput in the pres-
ence of heterogeneity. In International Symposium on High
Performance Computer Architecture, February 2011.

[34] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos. SESC
simulator, January 2005. http://sesc.sourceforge.net.

[35] B. F. Romanescu, S. Ozev, and D. J. Sorin. Quantifying the
impact of process variability on microprocessor behavior. In
Workshop on Architectural Reliability, December 2006.

[36] E. Rotem, R. Ginosar, A. Mendelson, and U. Weiser. Multiple
clock and voltage domains for chip multi processors. In
International Symposium on Microarchitecture, December
2009.

[37] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Ti-
wari, and J. Torrellas. VARIUS: A model of process variation
and resulting timing errors for microarchitects. Transactions
on Semiconductor Manufacturing, February 2008.

[38] A. Srivastava, D. Sylvester, and D. Blaauw. Statistical Anal-
ysis and Optimization for VLSI: Timing and Power. Springer,
2005.

[39] R. Teodorescu and J. Torrellas. Variation-Aware Application
Scheduling and Power Management for Chip Multiproces-
sors. In International Symposium on Computer Architecture,
June 2008.

[40] The R Project for Statistical Computing. http://www.r-
project.org/.

