
Comparison of Single-ISA Heterogeneous versus
Wide Dynamic Range Processors for Mobile

Applications
Hamid Reza Ghasemi1, Ulya R. Karpuzcu2, Nam Sung Kim3

1hamid@cs.wisc.edu, 2ukarpuzcu@umn.edu, 3nskim@illinois.edu
1CS Department, University of Wisconsin-Madison, 1210 W. Dayton St., Madison, WI, USA

2ECE Department, University of Minnesota, 200 Union St. S.E. Minneapolis, MN, USA
3ECE Department, 306 N. Wright St. Urbana, IL, USA

Abstract—Mobile computing devices demand processors to of-
fer a wide range of performance/power trade-offs so that they can
provide much needed high performance or low power consump-
tion depending on a given operating requirement. While dynamic
voltage/frequency scaling (DVFS) has been the most powerful tech-
nique to provide such trade-offs, few processor vendors have the
capability to provide a sufficient DVFS range requiring joint opti-
mization of devices and circuits. Facing such a challenge, two
promising approaches are proposed: scaling the amount of proces-
sor resources such as on-chip memory and execution units, i.e., dy-
namic resource scaling (DRS) and switching between big out-of-
order (OoO) and little in-order cores in a single-ISA heterogeneous
processor such as ARM’s big.LITTLE. In this paper, we compare
a single-ISA heterogeneous processor with a wide dynamic range
(WDR) processor augmented with DRS in terms of (1) device-, cir-
cuit-, architecture-level implications, (2) design challenges, (3)
area, (4) performance, and (5) energy efficiency. We evaluate a
big.LITTLE processor (as a representative of single-ISA heteroge-
neous processor) based on Cortex-A15/A7 and a WDR processor
based on Cortex-A15 running various mobile and SPEC2006
benchmarks. Our experiments demonstrate that the WDR proces-
sor combined with DRS can deliver energy efficiency close to the
single-ISA heterogeneous processor, depending on the power over-
head of circuit implementation to provide the wide DVFS range.

I.� INTRODUCTION
Todays mobile devices are required to execute various

applications, which results in diverse platform demands. Form
factor limitations restrict the battery capacity. Consequently, to
provide longer battery life and to meet different performance
demands, a client device must operate efficiently across
different power envelopes, and support both high-performance
and low-power modes. Dynamic voltage/frequency scaling
(DVFS) has been a powerful technique to enable energy
efficient computing [1]. However, with technology scaling, the
available voltage/frequency (V/F) range for commercial
processors has been continuously decreased. This is mainly due
to the challenges incurred in scaling the minimum operating V,
specifically for on-chip memory [2] [3] [4]. Consequently,
future mobile processors may not be able to support a wide V/F
range without facing significant area and/or power overhead [5]
[6] [7].

Two promising approaches can deliver a wide dynamic
power/performance range for mobile platforms without

exclusively relying on DVFS. The first approach, dynamic
resource scaling (DRS), adjusts, i.e., scales processor resources
to match workload characteristics by selectively activating on-
chip memory and execution units [13]. DRS can be effectively
combined with DVFS to render a wider V/F range. The second
approach, on the other hand, provides a wide
power/performance range by switching the execution between a
complex out-of-order (OoO) core optimized for high-V, and a
simple in-order core, optimized for low-V, in the form of a
single-ISA heterogeneous processor such as ARM’s
big.LITTLE [8]. The resulting power/performance trade-off is
comparable to a wide dynamic range (WDR) design, which
extends DVFS utility by optimizing each core to support
operation on a wide V range spanning high-V and low-V corners
[9]. Single-ISA heterogeneous designs can also facilitate DVFS
to extend the power/performance range further.

As a representative single-ISA heterogeneous processor for
mobile applications, big.LITTLE architecture can effectively
extend the dynamic power/performance range offered by
homogeneous processor configurations. big.LITTLE couples
little, i.e., relatively slow but low-power cores, with big, i.e.,
relatively fast and power-hungry ones. By switching between
big and LITTLE cores, the operating V can be dynamically
tailored to the computing needs. big.LITTLE architecture does
not require major device- or circuit-level changes. However,
software and (micro)architectural support should be provided to
orchestrate on-demand switching of the workload between big
and LITTLE cores at runtime. WDR architectures, on the other
hand, optimize each core to enable operation on a wide V/F
range. The wide range can cover both super-threshold and near-
threshold regimes [9]. Unlike the single-ISA heterogeneous
architecture, WDR variants do not require major
(micro)architectural changes. However, WDR operation
demands careful device- and circuit-level optimization to ensure
reliable operation at low Vs (where the susceptibility to noise
significantly increases), without sacrificing performance at high
Vs.

In this paper, we compare and contrast a representative
single-ISA heterogeneous design with a WDR processor
augmented with DRS for energy efficient mobile computing.
We consider the implications of both approaches for design

304978-1-4673-7166-7/15/$31.00 c©2015 IEEE

complexity, device, circuit and architecture level optimization,
and software support. We characterize performance, energy
efficiency, and area overhead. For several mobile and
SPEC2006 workloads, we analyze big.LITTLE as a
representative single-ISA heterogeneous processor on pairs of
ARM Cortex-A15/A7 cores, and WDR on ARM Cortex-A15.
The key contributions of this paper are as follows:
•� To the best of our knowledge, this is the first study to

compare and contrast single-ISA heterogeneous and WDR
architectures for mobile applications in terms of design
challenges.

•� We provide a detailed analysis of power and area overhead
of single-ISA heterogeneous versus WDR designs.

•� We demonstrate that single-ISA heterogeneous
architectures can be as energy-efficient as WDR processors
for both multi- and single-threaded applications, depending
on the power overhead incurred by circuit support for wide
dynamic range.

The paper is organized as follows: Section 2 explains how
single-ISA heterogeneous and WDR approaches differ in
providing a wide dynamic power/performance range. Section 3
discusses the design challenges of single-ISA heterogeneous
versus WDR architectures. Section 4 provides our evaluation
methodology. Section 5 covers the quantitative comparison of
single-ISA heterogeneous and WDR approaches. Section 6
concludes the paper.

II.� APPROACHES TO EXTEND THE DYNAMIC OPERATING
POWER/PERFORMANCE RANGE

Under contemporary technology scaling, the efficiency of
DVFS to enable energy-efficient computing is decreasing due
to the diminishing dynamic V (and thus F) range. Dynamic
resource scaling (DRS) and ARM’s big.LITTLE architectures
emerged as promising approaches to mimic DVFS utility for
sustainable energy efficiency. In the below, we detail how these
two approaches differ in providing a wide dynamic
power/performance range when compared to WDR
architectures designed to extend DVFS.
big.LITTLE represents a single-ISA heterogeneous system
encompassing cores of different microarchitectures to form two

different processor clusters: One cluster with four big, high
performance OoO cores (e.g., Cortex-A15), and another one
with four LITTLE, highly power-efficient in-order cores (e.g.,
Cortex-A7) [8]. To achieve the maximum energy efficiency, the
software plays a critical role in determining the right cluster for
a given task. Figure 1 shows two different software-based
dynamic task scheduling policies: (a) cluster migration, (b) CPU
migration [10].

Cluster migration from Figure 1(a) considers all four
LITTLE cores as one cluster and all four big cores as another.
During regular execution of the workload, only one cluster can
be active at a time, thus the inactive cluster is power-gated. As
the workload switches from one cluster to the other (i.e., during
cluster migration), both clusters become active to communicate
all relevant data over the last-level cache (L2). After migration,
the operating system activates the desirable cluster, and power-
gates the other. The migration time depends on the interconnect
between big and LITTLE cores [11]. The power management
unit (PMU) of the operating system switches clusters by
monitoring the load at the cluster level. This policy is
implemented as an extension to DVFS utility [10]: Any time the
lowest V/F state of the big core renders sub-optimal energy
efficiency, the workload switches from the lowest V/F state of
the big core to the highest V/F state of the LITTLE core.

CPU migration from Figure 1(b), on the other hand, pairs
each big core with one LITTLE core and exploits task migration
within each pair to improve energy efficiency. Each physical
big-LITTLE pair forms a single logical core. At any time, only
one physical core (big or LITTLE) per logical core can be
active. The inactive core of the pair is power-gated. During

 WDR big.LITTLE architecture
Architecture Same ISA Same ISA
Core microarchitecture One big OoO core One big OoO core + one small in-order core
Fully associative resources Larger SRAM cells; separate voltage domain No change
Combinational logic Larger devices; separate voltage domain No change

Cache design Separate supply voltage for caches; use of larger 6T or 8T/10T
SRAM cells to operate reliably at ultra-low voltages

Two separate L2 caches for each cluster,
interconnection network for cache coherency

Software support No change Task migration; policies to switch between clusters
Hardware overhead PMU unit Coherent interconnection network

Circuit level design Multi-level shifters;
power gating to proactively turn off idle resources No change

Device level design Larger devices No change

Table 1: Design challenges of WDR versus big.LITTLE architecture.

��
Figure 1: Task scheduling policies of big.LITTLE architecture: (a) cluster
migration, (b) CPU migration.

��
��
�
��
	

���

��
��
��
	��

��
	

���

 ��

��

��

��

�

�

�

�

�

�

�

�

2015 33rd IEEE International Conference on Computer Design (ICCD) 305

execution of the workload, each logical core can switch from its
LITTLE core to its big core (and vice versa) independently.
During CPU migration, the operating system selects the
appropriate physical core by monitoring the load level of each
core separately, unlike (a). Whenever the scheduler determines
to switch, the system powers up the power-gated core of the pair,
communicates the architected state to the core to be activated,
power-gates the currently active core, and continues execution
on the newly activated core. This policy is also implemented as
an extension to DVFS utility [10].
Dynamic Resource Scaling (DRS) can also mimic DVFS
functionality, by compensating for the limited V/F range in
multi-core processors [13]. The idea is selective activation, i.e.,
scaling, of the execution resources such as functional units and
on-chip memories to match workload demands. To enable
dynamic resource scaling, fine grain power gating is necessary.
In this manner, exeution resources such as ALU, FPU, ROB, L1
or L2 caches can be controlled separately. A dedicated hardware
PMU can be leveraged to implement such fine grain power-
gating policies [12]. DRS can also be effectively combined with
DVFS.
Wide Dynamic Range (WDR) design enables a processor to
operate on a wide V range which can cover both the near-
threshold and conventional, super-threshold regions [9] [12].
Unlike big.LITTLE, WDR does not require major
(micro)architectural changes. However, to accommodate
operation at ultra-low Vs, where reliability becomes a critical
concern, WDR relies on complex device- and circuit-level
optimization [12] such as providing multiple fine-grain V and
power gating domains or multiple level shifting stages. In this
case, a dedicated hardware PMU controls not only different V
levels, but also clock and power gating schedules as a function
of load conditions. WDR can facilitate DRS, as well. DRS in
conjunction with WDR (WDR-DRS) demands similar power
gating support as basic DRS.

III.� DESIGN CHALLENGES OF BIG.LITTLE VERSUS WDR
ARCHITECTURES

In the following, we tabulate the major sources of design
complexity for big.LITTLE and WDR architectures. Table 1
summarizes our observations.
big.LITTLE architecture needs to ensure coherency of shared
data upon migration. The simplest way to achieve this is to
disable caches and to send all dirty data to (shared) memory over
the AMBA3 bus [11], which incurs a high power and

performance overhead. Instead, modern big.LITTLE designs
rely on an AMBA4 coherent interface connected to a coherent
interconnect (i.e., CCI-400) [11]. When compared to the
AMBA3-based solution, the energy efficiency improves as
cores can do useful work or enter a lower power state during
migration. Other challenges include the sizing of LITTLE cores
to deliver maximum possible energy efficiency while
supporting very low-V operation at modest area cost. For
example, the area of the LITTLE cluster of cortex-A7 is
1.8��� [14].
WDR architectures should protect the processor pipeline, the
register file and on-chip memories against variation-induced
errors due to the higher susceptability to variation at lower Vs,
however, without compromising performance at higher Vs. This
renders shallow pipelines for logic, and larger SRAM cells,
possibly of higher number of transistors than the standard 6T
[15] [16]. Even then, the minimum safe operating V of SRAM
to exclude errors remains higher than that of logic, accordingly,
operating memories at a higher V than logic renders higher
energy efficiency [17]. A separate V domain for memories is
necessary to achieve this [12]. Moreover, to facilitate data
communication between different V domains, preferably
configurable level shifters should be added. In this manner,
clock signals can be synchronized across V domains, at all Vs
covered by WDR. Such optimizations to support lower V
operation incur an area overhead, which in turn results in a
power overhead at higher Vs. The area overhead can reach 80%,
where a comparable design optimized only for low-V operation
incurs an area overhead of about 15% [9]. To mitigate the power
overhead, fine grain clock or power gating can be adapted,
increasing system complexity further. A dedicated PMU is
necessary to orchestrate the assignment of V levels along with

��	��
�������
�� �����������
�������
��� ����
�����������������	����������������
�������
��

 �
����!�"� �
��#$%&'� (����
����!�"� �
��#$%&'� ���������
����!�"� �
��#$%)� ��&*���&� +,-(./$���.0/(�+����1���

+$2�������� +$2�������� ,$2�������� ��&*���&� +,-(./$���.0/(�+����1���

&03�
�����
��1�� &03$���
��
�����
��1�� +,$���
��
�����
��1�� ���
�����4
�����1� ����!�$�����������

&,5�	6(� &,5$���
��	6(� $� �,*���������1����
� '&,-(.5$2��.0/(*�&3����1���

/���
��� /���
���������1����
� /���
�������������1����
� �,*�����1����
� ,�(.5$2��.0/(*�&,����1���

	���1�
�7.8�������"�
�&�59:;*3�<7�$�3�59:;*3�0'7��

	���1�
�7.8�������"�
�&�59:;*3�<7�$�3�59:;*3�0'7��

	���1�
�7.8�������"�
�&�,9:;*3�<7�$�3�/9:;*3�0'7�� �,*���	� ,�(.5$2��.0/(*�&,����1���

=��
$��
����1��7.8�������"�
�3�09:;*3�07�$��3�,9:;*3�'+7�� $� $� $� $�

Table 2: Summary of WDR and big.LITTLE architecture designs based on A15 and A7 processor configuration.

Figure 2: Oracular greedy optimization to find the most energy-efficient
processor configuration per interval in big.LITTLE, WDR, and WDR-DRS
architecture.

���� �� ���� ����

��	
�������

��	
�������

306 2015 33rd IEEE International Conference on Computer Design (ICCD)

deactivation of idle functional blocks or memory banks [12] [9].
Since low-V operation is more sensitive to any source of noise,
V noise due to power management (i.e., power gating) should
be taken into account. Similarly, controlling clock skew
complicates placement and routing [12] [9].

IV.� EVALUATION METHODOLOGY
A.� Power Management Algorithm

The power management algorithm is a key player in the
evaluation of big.LITTLE and WDR architectures. The
algorithm determines big/LITTLE configuration or DVFS state
per execution interval. There are various methods to predict/find
the optimal V/F state and core configuration for each interval,
based on the execution history. To provide a fair and accurate
comparison of big.LITTLE and WDR architectures,
independent of the algorithm in use, we assume that the optimal
configuration at every interval is known in advance. We employ
oracular greedy optimization to extract the best core
configuration (i.e., big or LITTLE) along with optimal V/F state
for big.LITTLE; the optimal V/F state for WDR; and the
optimal V/F state along with best configuration of active
resources across all cores for WDR-DRS - all per execution
interval (i.e., local optima). To find the configuration of
maximum energy efficiency, we use ������	 as our energy
efficiency metric instead of MIPS�	
to emphasize
performance.

Figure 2 demonstrates the execution trajectory under orac-
ular optimization over consecutive execution intervals. For ex-
ample, for WDR, in each interval we exhaustively simulate all
possible V and F pairs. At the end of each interval, (i) we calcu-
late the ������	 for each V/F pair; (ii) we extract the V/F
pair to deliver the maximum ������	 in that particular inter-
val; (iii) we checkpoint the architected state corresponding to
the selected V/F configuration; (iv) we continue with the simu-
lation for the next interval starting from the checkpoint from

(iii). We repeat these steps for each interval, until the application
terminates. A similar greedy framework applies for big.LITTLE
and WDR-DRS to characterize the most energy efficient con-
figuration on a per execution interval basis.

B.� Architecture Simulation Environment
To evaluate WDR, we deploy a quad-core Cortex-A15. Each
core is three-wide issue with 32KB private L1-D and L1-I
caches, and a shared 2MB L2 cache with snoop-based MESI
protocol. For WDR-DRS, we add new configurations to the
WDR platform by scaling processor resources, such as ALU,
ROB, LSQ, and L2 cache. Our platform for big.LITTLE
architecture includes two clusters of four cores. The big cluster
includes a quad-core Cortex-A15 (similar to the WDR
configuration); the LITTLE cluster, four in-order Cortex-A7
cores. Table 2 summarizes the simulation parameters.

We use gem5 full system simulator [18] augmented with
our oracular power management algorithm. We rely on McPAT
[19] to estimate the power consumption of Cortex-A15 and Cor-
tex-A7 configurations at 22nm. We have modified McPAT to
support different V and F levels for accurate power estimation
at different DVFS states. Table 2 includes all regular V/F states
in WDR (to cover both super- and near-threshold regions), and
big.LITTLE architectures. Since we target mobile platforms, we
use moby benchmarks [20] that incorporate popular android ap-
plications from Google Play Store, and bbench benchmarks
Adobe, Bbench, Baidumap, Frozen bubble, K9mail, King soft
office, Net ease, Sina weibo, and Mxplayer (denoted by ADOB,
BBCH, BDMP, FZBB, K9ML, KSFC, NTES, SNWB, and

Table 4: The LITTLE core configurations in big.LITTLE architecture.

 ������ �����
2����

>�
%�?�

�,�
��-(��

�&��
�-(��

�&��
�-(��

>�
�=��
	����

>�
81���
	����

���&� ,� ,� '&,� +,� +,� +,� +,�

���,� ,� &� '&,� +,� +,� +,� +,�

���+� &� &� '&,� +,� +,� +,� +,�

���/� &� &� ,'0� +,� +,� +,� +,�

���'� &� &� ,'0� &0� +,� +,� +,�

���0� &� &� ,'0� &0� &0� +,� +,�

���)� &� &� ,'0� &0� &0� &0� +,�

���5� &� &� ,'0� &0� &0� &0� &0�

 �����
����� ����� %�?� 	6(� ��@� �,�������

 �����
�����&� +� +� +0� ,/� ,��(�

 �����
�����,� ,� ,� ,/� &0� &��(�

 �����
�����+� &� &� &0� 5� '&,�-(�

Table 3: WDR-DRS configurations

Figure 3: Energy efficiency of big.LITTLE (BL) versus WDR. BL-ideal, BL-A3Swch, and BL-A4Swch correspond to big.LITTLE with no switching
overhead, switching overhead modeled after AMBA3, and AMBA4, respectively. WDR-ideal, and WDR-DRS ignore the power overhead incurred by a
practical WDR implementation.

���

���

���

���

���� ���� ���	
��� ���� �
� ��� ��� ��	� ���

�
��
��
��
	

������ ! ������� ! ����"#$% ����&#$% ������

2015 33rd IEEE International Conference on Computer Design (ICCD) 307

MXPR). In addition, we study 10 representetive single-threaded
applications from SPEC2006 benchmark suite [21], including
both compute- and memory-bound benchmarks: bzip2, gcc,
soplex, mcf, libquantum, lbm, milc, hammer, and astar.

V.� EVALUATION

In this section, we quantitatively compare and contrast the
energy efficiency of WDR and big.LITTLE architectures in
terms of ������	.

A.� Ideal big.LITTLE versus Ideal WDR
Figure 3 demonstrates energy efficiency in terms of ������	
for our multi-threaded benchmarks. We consider different
configurations: BL-ideal, BL-A3Swch, and BL-A4Swch
correspond to big.LITTLE with no switching overhead,
switching overhead modeled after AMBA3, and AMBA4,
respectively. WDR-ideal, and WDR-DRS ignore the power
overhead incurred by a practical WDR implementation. BL-
ideal ignores both the power and performance overhead of
switching a process between big and LITTLE cores. All data is

normalized to the ������	
of BL-ideal. Depending on the
application, BL-ideal can achieve by up to 16% higher energy
efficiency than WDR-ideal (for NTES). Similarly, WDR-ideal
can achieve by up to 15% higher energy efficiency than BL-
ideal (for FZBB). We observe that, on average, BL-ideal is as
energy efficient as WDR-ideal although they take very
different approaches in improving energy efficiency.

BL-ideal and WDR-ideal achieve similar energy efficiency
levels while operating at different V/F states. Figure 4 demon-
strates the percentage of processor residency time in each V/F
state under BL-ideal and WDR-ideal. Figure 4(a) shows the %
time spent at four different V/F states for big.LITTLE. “B-
1.8,1.6,1.4GHz” corresponds to p(ower)-states of the big core at
1.8GHz, 1.6GHz and 1.4GHz; “B-1.2,1.0,0.8 GHz”, at 1.2GHz,
1.0GHz, and 0.8GHz, respectively. Similarly, “L-1.2,1.0GHz”
corresponds to p-states of the LITTLE core at 1.2GHz, and
1.0GHz; “L-0.8,0.6,0.4GHz”, at 0.8GHz, 0.6GHz, and 0.4GHz.
Figure 4(b) captures the % time spent at the four V/F states for
WDR. The high V states of WDR, “WDR-1.8,1.6,1.4GHz” and

 (a) (b)
Figure 4: Fraction of time spent in different V/F states of big.LITTLE (a) and WDR (b) architectures, to achieve the energy efficiency reported in Figure 3.
The shaded boxes show the % time spent in LITTLE cores for big.LITTLE, and in NTV for WDR, respectively.

��

���

���

���

����

���� ���� ���	
��� ��� ��
� ���� ���� ��	� ���

������������������ �� �!�� �����
�� �!�� ���������� �� ���� ���� �����

�
��

�
��
�
��
�
��
��
	�

��

���

���

���

����

���� ���� ���	
��� ��� ��
� ���� ������	� ���

�����������!��� ����������
���� �!�� ���������� ���� ���� ���� �����

Figure 6: MIPS2/W comparison of big.LITTLE (BL) architecture and WDR for single-threaded applications.

�"�

�"�

�"�

�"�

����� ��� ���	
�� ��
 ��

��� �

� ���� ���

�
��
��
��
	

�������� ��������� ��������� ��������� �������

Figure 5: MIPS2/W of BL implemented using a pair of cortex-A15 as the big core, and different versions of cortex-A7 as the LITTLE core.

 �

 ��

��

���

���� ���� ���	
��� �'�� �
� ��� ��� ��	� ���

�
��
��
��
	

�������#�(! ������� ������" ������& ������� ������" ������(������)

308 2015 33rd IEEE International Conference on Computer Design (ICCD)

“WDR1.2,1.0,0.8GHz”, have direct correspondents in big.LIT-
TLE. “WDR-0.6GHz” and “WDR-0.4,0.2GHz”, on the other
hand, demarcate the near-threshold V (NTV) states. We observe
that, overall, WDR achieves higher energy efficiency by spend-
ing more time in high performance, high V states which incur
higher power consumption than NTV states. On average,
WDR spends 77% of time in these V/F states with F>=0.8GHz,
and only 23% in NTV states with F<=0.6GHz. The power con-
sumption in NTV states is low, however, so is the performance
due to the low operating F. Accordingly, NTV states cannot im-
prove the energy efficiency in most intervals. WDR boosts the
energy efficiency mainly by running the applications faster in
high V states most of the time, to compensate for the relatively
higher power consumption. On the other hand, big.LITTLE
achieves a similar level of energy efficiency by spending more
time than WDR in lower power/performance states. The
big.LITTLE architecture spends 52% of time in its big core V/F
states, and 48% in the LITTLE core V/F states (i.e., using the
LITTLE cores). Although the execution on the LITTLE cores
takes longer, the power savings dominate. Thus, the overall en-
ergy efficiency improves. In terms of performance, WDR al-
ways outperforms the big.LITTLE architecture, on average by
14%. However, both achieve similar energy efficiency in terms
of ������	.
WDR with Dynamic Resource Scaling (WDR-DRS): Figure
3 characterizes the energy efficiency of dynamic resource
scaling (DRS) at NTV states of WDR-ideal, WDR-DRS. To
evaluate WDR-DRS, we added three new configurations, listed
in Table 3, which represent an extension to the original WDR
configuration (i.e., configuration 1). For configurations 2 and 3,
we scale the issue width, the number of ALUs, the number of
ROB and LSQ entries by a factor of 2/3 and 1/3 in comparison
to the configuration 1, respectively. Although it is possible to

apply DRS on both high V and NTV states, we confined our
analysis to NTV states to conduct a fair comparison with
big.LITTLE. The new NTV configurations include the baseline
NTV states and the combination of each V/F state with each
DRS configuration, resulting in 6 new NTV states. As shown in
Figure 3, we observe that applying dynamic resource scaling
on WDR (WDR-DRS) improves ������ by 2% compared
to WDR-ideal, on average, across all configurations.
Single-Threaded Applications: Figure 6 shows the energy
efficiency of single-threaded applications from SPEC2006
under different big.LITTLE and WDR configurations. In
big.LITTLE, only one big and one LITTLE core are active,
hence the switching happens between these two cores. For
WDR, only one (big core correspondent) core is active. We
observe that the energy efficiency of single-threaded
applications follows a similar trend as multi-threaded
applications. On average, WDR-ideal and WDR-DRS achieve
2% and 1% lower ������	 than BL-ideal, respectively.

B.� Energy Overhead of big.LITTLE versus WDR

Impact of switching overhead of big.LITTLE architecture
on MIPS2/W: Figure 3 demonstrates the energy efficiency of
big.LITTLE architecture when we account for the overhead of
switching between LITTLE and big clusters. During the
switching period, both clusters are on and consume power,
although they do not execute the application. Switching impairs
energy efficiency by consuming power during the transition,
and by increasing the execution time due to the cluster
migration. There are two mainstream implementations for inter-
cluster interconnect: AXI interconnect using AMBA3 and CCI-
400 interconnect using AMBA4. We studied the overhead under
both. Figure 3 shows ������	 of BL-A3Swch and BL-
A4Swch that use AMBA3 and AMBA4 buses, respectively.

Figure 7: Sensitivity of MIPS2/W to the power overhead of WDR of 10%, 20% and 30%.

Figure 8: MIPS2/W comparison of big.LITTLE (BL) supporting CPU migration and WDR supporting per-core voltage domains

2015 33rd IEEE International Conference on Computer Design (ICCD) 309

The switching overhead under AMBA3 is higher than under
AMBA 4, as it needs software intervention to orchestrate the
writeback of dirty cache lines to memory. This takes on average
about 1.4ms for a 2MB L2 cache when switching from the big
to the LITTLE cores, and about 0.4ms for a 512KB L2 cache
when switching from the LITTLE to the big cores. AMBA4, on
the other hand, relies on hardware-based cache coherence which
eliminates communication with memory during the transition,
thus takes less time -- 33us on average. Accordingly, the
switching overhead of big.LITTLE reduces its energy
efficiency (under ideal conditions) by 4% (3%) for AMBA3
and 2%(1%) for AMBA4, on average, for multi- (single-)
threaded applications, as depicted in Figure 3 (Figure 6).
Impact of the size of the little core on MIPS2/W: In Figure 5,
we study the impact of the size of the LITTLE cores on
big.LITTLE’s energy efficiency. We study eight different
configurations, as shown in Table 4, where BL-cfg1
corresponds to the original cortex-A7. As shown in Figure 5, as
the size of the LITTLE core decreases, the energy efficiency of
big.LITTLE architecture degrades, resulting in upto 47%
lower ������ when compared to BL-ideal.
Impact of power overhead of a practical WDR
implementation on MIPS2/W: In Figure 7, we study the impact
of the power overhead of a practical WDR implementation on
the energy-efficiency. We study three different cases to incur
10%, 20% and 30% power overhead. As shown in Figure 7, as
the power overhead due to implementation complexity
increases, the energy efficiency of WDR decreases. It results in
up to 25% lower ������	 compared to the WDR-ideal.
MIPS2/W comparison of big.LITTLE supporting CPU
migration and WDR supporting per-core V domains: Up to
this point, we analyzed a big.LITTLE architecture with cluster
migration, as shown in Figure 1(a), and a WDR design with a
single V domain. Figure 8 depicts the energy efficiency of
big.LITTLE under CPU migration (Figure 1(b)), and WDR,
under per-core V domains. We observe that the energy
efficiency of big.LITTLE with CPU migration and WDR with
per-core V domains follows a similar trend to big.LITTLE
with cluster migration and WDR with single V domain.

VI.� CONCLUSION
This paper compares and contrasts single-ISA heterogenous and
wide dynamic range (WDR) architectures in terms of energy
efficiency, focusing on mobile applications. We observe that
WDR processors facilitating dynamic resource sharing can
deliver energy efficiency close to single-ISA heterogeneous
processors, depending on the power overhead of circuit
implementation to support wide-range DVFS.

VII.� ACKNOWLEDGEMENTS

The authors would like to acknowledge Somayeh Sardashti, and
Srinivasan Narayanamoorthy and our anonymous reviewers for
their comments on the paper.

REFERENCES
[1] C. Isci, A. Buyuktosunoglu, P. Bose and M. Martonosi, "An analysis of efficient

multi-core global power management policies: maximizing performance for a
given power budget," in IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2006.

[2] J. Croon, S. Decoutere, W. Sansen and H. Maes, "Physical modeling and
prediction of the matching properties of MOSFETs," in IEEE European Solid-
State Device Research Conference (ESSDERC), 2004.

[3] S. Ohbayashi, M. Yabuuchi, K. Nii, Y. Tsukamoto, S. Imaoka, Y. Oda, T.
Yoshihara and M. Igarashi, "A 65-nm SoC Embedded 6T-SRAM Designed for
Manufacturability With Read and Write Operation Stabilizing Circuits," IEEE
Journal of Solid-State Circuits (JSSC), vol. 42, no. 4, pp. 820-829, Apr 2007.

[4] [Online]. Available: http://www.src.org/calendar/e003676/finalreport.pdf. 2009.

[5] S.-T. Zhou, S. Katariya, H. Ghasemi, S. Draper and N. Kim, "Minimizing total
area of low-voltage SRAM arrays through joint optimization of cell size,
redundancy, and ECC," in IEEE Conference on Computer Design (ICCD), 2010.

[6] H. Ghasemi, S. Draper, N. Kim, "Low-voltage on-chip cache architecture using
heterogeneous cell sizes for high-performance processors," in IEEE
International Conference on High Performance Computer Architecture (HPCA),
2011.

[7] S. Rusu, S. Tam, S. Muljono, H. Stinson, J. Ayers, D. Chang, J. Varada, R. Ratta
and M. Kottapalli, "A 45nm 8-core enterprise Xeon® processor," in IEEE
International Solid-State Circuits Conference (ISSCC), 2009.

[8] P. Greenhalgh, "ARM," ARM, September 2011. [Online]. Available:
http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf.

[9] R. Gregory, D. S., J. S., and S. Vangal, "IA-32 Processor with a Wide-Voltage-
Operating Range in 32-nm CMOS," IEEE Micro, vol.33, no.2, pp.28-36, 2013.

[10] M. Poirier, "Linux Foundation," 2013. [Online]. Available:
https://events.linuxfoundation.org/images/stories/slides/elc2013_poirier.pdf.

[11] System.LSI, "Evaluation on Exynos.bL Processor," [Online].
Available:http://events.linuxfoundation.org/images/stories/pdf/klf2012_yu.pdf.
2012.

[12] S. Jain, S. Khare, S. Yada, P. Salihundam, S. Ramani, S. Muthukumar, A. K. S.
M, S. K. Gb, H. Wilson, N. Borkar, V. De and S. Borkar, "A 280mV-to-1.2V
Wide-Operating-Range IA-32," in IEEE International Solid-State Circuits
Conference (ISSCC), 2012.

[13] H. Ghasemi and N. Kim, "RCS: runtime resource and core scaling for power-
constrained multi-core processors," in IEEE International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2014.

[14] K. Flautner, "Heterogeneity to the rescue," [Online]. Available:
https://www.bscmsrc.eu/sites/default/files/media/arm-heterogenous-mp-
november-2011.pdf. 2011.

[15] G. Chen, D. Blaauw, T. Mudge, D. Sylvester and N. Kim, "Yield-driven near-
threshold SRAM design," in ," IEEE/ACM International Conference on
Computer-Aided Design (ICCAD) 2007.

[16] L. Chang, R. Montoye, Y. Nakamura, K. Batson, R. Eickemeyer, R. Dennard, W.
Haensch and D. Jamsek, "An 8T-SRAM for Variability Tolerance and Low-
Voltage Operation in High-Performance Caches," IEEE Journal of Solid-State
Circuits (JSSC), vol. 43, no. 4, pp. 956-963, 2008.

[17] R. Dreslinski, B. Zhai, T. Mudge, and D. Sylvester, "An energy efficient parallel
architecture using near threshold operation," in IEEE International Conference
on Parallel Architectures and Compilation Techniques (PACT), 2007.

[18] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi, T. Krishna, S.
Sardashti, K. Sewell, N. Vaish, M. Hill and a. D.Wood, "The gem5 simulator,"
ACM SIGARCH Computer Architecture News, vol.39, no.2, pp.1-7, 2011.

[19] [Online]. Available: http://www.hpl.hp.com/research/mcpat.

[20] M. C. Yongbing Huang, "Moby: A Mobile Benchmark Suite for Architectural
Simulator," in IEEE International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), 2014.

[21] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, J. S. Steely and J. Emer,
"Adaptive Insertion Policies for Managing Shared Caches," in IEEE International
Conference on Parallel Architectures and Compilation Techniques (PACT),
2008.

310 2015 33rd IEEE International Conference on Computer Design (ICCD)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

