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Abstract—Mobile computing devices demand processors to of-
fer a wide range of performance/power trade-offs so that they can 
provide much needed high performance or low power consump-
tion depending on a given operating requirement. While dynamic 
voltage/frequency scaling (DVFS) has been the most powerful tech-
nique to provide such trade-offs, few processor vendors have the 
capability to provide a sufficient DVFS range requiring joint opti-
mization of devices and circuits. Facing such a challenge, two 
promising approaches are proposed: scaling the amount of proces-
sor resources such as on-chip memory and execution units, i.e., dy-
namic resource scaling (DRS) and switching between big out-of-
order (OoO) and little in-order cores in a single-ISA heterogeneous 
processor such as ARM’s big.LITTLE. In this paper, we compare 
a single-ISA heterogeneous processor with a wide dynamic range 
(WDR) processor augmented with DRS in terms of (1) device-, cir-
cuit-, architecture-level implications, (2) design challenges, (3) 
area, (4) performance, and (5) energy efficiency. We evaluate a 
big.LITTLE processor (as a representative of single-ISA heteroge-
neous processor) based on Cortex-A15/A7 and a WDR processor 
based on Cortex-A15 running various mobile and SPEC2006 
benchmarks. Our experiments demonstrate that the WDR proces-
sor combined with DRS can deliver energy efficiency close to the 
single-ISA heterogeneous processor, depending on the power over-
head of circuit implementation to provide the wide DVFS range. 

I.� INTRODUCTION 
Todays mobile devices are required to execute various 

applications, which results in diverse platform demands. Form 
factor limitations restrict the battery capacity. Consequently, to 
provide longer battery life and to meet different performance 
demands, a client device must operate efficiently across 
different power envelopes, and support both high-performance 
and low-power modes. Dynamic voltage/frequency scaling 
(DVFS) has been a powerful technique to enable energy 
efficient computing [1]. However, with technology scaling, the 
available voltage/frequency (V/F) range for commercial 
processors has been continuously decreased. This is mainly due 
to the challenges incurred in scaling the minimum operating V, 
specifically for on-chip memory [2] [3] [4]. Consequently, 
future mobile processors may not be able to support a wide V/F 
range without facing significant area and/or power overhead [5] 
[6] [7].  

Two promising approaches can deliver a wide dynamic 
power/performance range for mobile platforms without 

exclusively relying on DVFS. The first approach, dynamic 
resource scaling (DRS), adjusts, i.e., scales processor resources 
to match workload characteristics by selectively activating on-
chip memory and execution units [13]. DRS can be effectively 
combined with DVFS to render a wider V/F range. The second 
approach, on the other hand, provides a wide 
power/performance range by switching the execution between a 
complex  out-of-order (OoO) core optimized for high-V, and a 
simple in-order core, optimized for low-V, in the form of a 
single-ISA heterogeneous processor such as ARM’s 
big.LITTLE [8]. The resulting power/performance trade-off is 
comparable to a wide dynamic range (WDR)  design, which 
extends DVFS utility by optimizing each core to support 
operation on a wide V range spanning high-V and low-V corners 
[9]. Single-ISA heterogeneous designs can also facilitate DVFS 
to extend the power/performance range further. 

As a representative single-ISA heterogeneous processor for 
mobile applications, big.LITTLE architecture can effectively 
extend the dynamic power/performance range offered by 
homogeneous processor configurations. big.LITTLE couples 
little, i.e., relatively slow but low-power cores, with big, i.e., 
relatively fast and power-hungry ones. By switching between 
big and LITTLE cores, the operating V can be dynamically 
tailored to the computing needs. big.LITTLE architecture does 
not require major device- or circuit-level changes. However, 
software and (micro)architectural support should be provided to 
orchestrate on-demand switching of the workload between big 
and LITTLE cores at runtime. WDR architectures, on the other 
hand, optimize each core to enable operation on a wide V/F 
range. The wide range can cover both super-threshold and near-
threshold regimes [9]. Unlike the single-ISA heterogeneous 
architecture, WDR variants do not require major 
(micro)architectural changes. However, WDR operation 
demands careful device- and circuit-level optimization to ensure 
reliable operation at low Vs (where the susceptibility to noise 
significantly increases), without sacrificing performance at high 
Vs.  

In this paper, we compare and contrast a representative 
single-ISA heterogeneous design with a WDR processor 
augmented with DRS for energy efficient mobile computing. 
We consider the implications of both approaches for design 
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complexity, device, circuit and architecture level optimization, 
and software support. We characterize performance, energy 
efficiency, and area overhead. For several mobile and 
SPEC2006 workloads, we analyze big.LITTLE as a 
representative single-ISA heterogeneous processor on pairs of 
ARM Cortex-A15/A7 cores, and WDR on ARM Cortex-A15. 
The key contributions of this paper are as follows:  
•� To the best of our knowledge, this is the first study to 

compare and contrast single-ISA heterogeneous and WDR 
architectures for mobile applications in terms of design 
challenges. 

•� We provide a detailed analysis of power and area overhead 
of single-ISA heterogeneous versus WDR designs. 

•� We demonstrate that single-ISA heterogeneous 
architectures can be as energy-efficient as WDR processors 
for both multi- and single-threaded applications, depending 
on the power overhead incurred by circuit support for wide 
dynamic range. 

The paper is organized as follows: Section 2 explains how 
single-ISA heterogeneous and WDR approaches differ in 
providing a wide dynamic power/performance range. Section 3 
discusses the design challenges of single-ISA heterogeneous 
versus WDR architectures. Section 4 provides our evaluation 
methodology. Section 5 covers the quantitative comparison of 
single-ISA heterogeneous and WDR approaches. Section 6 
concludes the paper. 

II.� APPROACHES TO EXTEND THE DYNAMIC OPERATING 
POWER/PERFORMANCE RANGE  

Under contemporary technology scaling, the efficiency of 
DVFS to enable energy-efficient computing is decreasing due 
to the diminishing dynamic V (and thus F) range. Dynamic 
resource scaling (DRS) and ARM’s big.LITTLE architectures 
emerged as promising approaches to mimic DVFS utility for 
sustainable energy efficiency. In the below, we detail how these 
two approaches differ in providing a wide dynamic 
power/performance range when compared to WDR 
architectures designed to extend DVFS. 
big.LITTLE represents a single-ISA heterogeneous system 
encompassing cores of different microarchitectures to form two 

different processor clusters: One cluster with four big, high 
performance OoO cores (e.g., Cortex-A15), and another one 
with four LITTLE, highly power-efficient in-order cores (e.g., 
Cortex-A7) [8]. To achieve the maximum energy efficiency, the 
software plays a critical role in determining the right cluster for 
a given task. Figure 1 shows two different software-based 
dynamic task scheduling policies: (a) cluster migration, (b) CPU 
migration [10].  

Cluster migration from Figure 1(a) considers all four 
LITTLE cores as one cluster and all four big cores as another. 
During regular execution of the workload, only one cluster can 
be active at a time, thus the inactive cluster is power-gated. As 
the workload switches from one cluster to the other (i.e., during 
cluster migration), both clusters become  active to communicate 
all relevant data over the last-level cache (L2). After migration, 
the operating system activates the desirable cluster, and power-
gates the other. The migration time depends on the interconnect 
between big and LITTLE cores [11]. The power management 
unit (PMU) of the operating system switches clusters by 
monitoring the load at the cluster level. This policy is 
implemented as an extension to DVFS utility [10]: Any time the 
lowest V/F state of the big core renders sub-optimal energy 
efficiency, the workload switches from the lowest V/F state of 
the big core to the highest V/F state of the LITTLE core. 

CPU migration from Figure 1(b), on the other hand, pairs 
each big core with one LITTLE core and exploits task  migration 
within each pair to improve energy efficiency. Each physical 
big-LITTLE pair forms a single logical core. At any time, only 
one physical core (big or LITTLE) per logical core can be 
active. The inactive core of the pair is power-gated. During 

 WDR  big.LITTLE architecture  
Architecture Same ISA Same ISA 
Core microarchitecture  One big  OoO core  One big  OoO core + one small in-order core 
Fully associative resources Larger SRAM cells; separate voltage domain No change 
Combinational logic Larger devices; separate voltage domain No change  

Cache design Separate supply voltage for caches; use of larger 6T or 8T/10T 
SRAM cells to operate reliably at ultra-low voltages 

Two separate L2 caches for each cluster,  
interconnection network for cache coherency 

Software support No change  Task migration; policies to switch between clusters 
Hardware overhead PMU unit Coherent interconnection network  

Circuit level design Multi-level shifters;  
power gating to proactively turn off idle resources No change 

Device level design  Larger devices  No change  
 

Table 1: Design challenges of WDR versus big.LITTLE architecture. 

���������������������������������������������������� 
Figure 1: Task scheduling policies of big.LITTLE architecture: (a) cluster
migration, (b) CPU migration. 
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execution of the workload, each logical core can switch from its 
LITTLE core to its big core (and vice versa) independently. 
During CPU migration, the operating system selects the 
appropriate physical core by monitoring the load level of each 
core separately, unlike (a). Whenever the scheduler determines 
to switch, the system powers up the power-gated core of the pair, 
communicates the architected state to the core to be activated, 
power-gates the currently active core, and continues execution 
on the newly activated core. This policy is also implemented as 
an extension to DVFS utility [10]. 
Dynamic Resource Scaling (DRS) can also mimic DVFS 
functionality, by compensating for the limited V/F range in 
multi-core processors [13]. The idea is selective activation, i.e., 
scaling, of the execution resources such as functional units and 
on-chip memories to match workload demands. To enable 
dynamic resource scaling, fine grain power gating is necessary. 
In this manner, exeution resources such as ALU, FPU, ROB, L1 
or L2 caches can be controlled separately. A dedicated hardware 
PMU can be leveraged to implement such fine grain power-
gating policies  [12]. DRS can also be effectively combined with 
DVFS. 
Wide Dynamic Range (WDR) design enables a processor to 
operate on a wide V range which can cover both the near-
threshold and conventional, super-threshold regions [9] [12]. 
Unlike big.LITTLE, WDR does not require major 
(micro)architectural changes. However, to accommodate 
operation at ultra-low Vs, where reliability becomes a critical 
concern, WDR relies on complex device- and circuit-level 
optimization [12] such as providing multiple fine-grain V and 
power gating domains or multiple level shifting stages. In this 
case, a dedicated hardware PMU controls not only different V 
levels, but also clock and power gating schedules as a function 
of load conditions. WDR can facilitate DRS, as well. DRS in 
conjunction with WDR (WDR-DRS) demands similar power 
gating support as basic DRS.  

III.� DESIGN CHALLENGES OF BIG.LITTLE VERSUS WDR 
ARCHITECTURES 

In the following, we tabulate the major sources of design 
complexity for big.LITTLE and WDR architectures. Table 1 
summarizes our observations.  
big.LITTLE architecture needs to ensure coherency of shared 
data upon migration. The simplest way to achieve this is to 
disable caches and to send all dirty data to (shared) memory over 
the AMBA3 bus [11], which incurs a high power and 

performance overhead. Instead, modern big.LITTLE designs 
rely on an AMBA4 coherent interface connected to a coherent 
interconnect (i.e., CCI-400) [11]. When compared to the 
AMBA3-based solution, the energy efficiency improves as 
cores can do useful work or enter a lower power state during 
migration. Other challenges include the sizing of LITTLE cores 
to deliver maximum possible energy efficiency while 
supporting very low-V operation at modest area cost. For 
example, the area of the LITTLE cluster of cortex-A7 is 
1.8��� [14]. 
WDR architectures should protect the processor pipeline, the 
register file and on-chip memories against variation-induced 
errors due to the higher susceptability to variation at lower Vs, 
however, without compromising performance at higher Vs. This 
renders shallow pipelines for logic, and larger SRAM cells, 
possibly of higher number of transistors than the standard 6T 
[15] [16]. Even then, the minimum safe operating V of SRAM 
to exclude errors remains higher than that of logic, accordingly, 
operating memories at a higher V than logic renders higher 
energy efficiency [17]. A separate V domain for memories is 
necessary to achieve this [12]. Moreover, to facilitate data 
communication between different V domains, preferably 
configurable level shifters should be added. In this manner, 
clock signals can be synchronized across V domains, at all Vs 
covered by WDR. Such optimizations to support lower V 
operation incur an area overhead, which in turn results in a 
power overhead at higher Vs. The area overhead can reach 80%, 
where a comparable design optimized only for low-V operation 
incurs an area overhead of about 15% [9]. To mitigate the power 
overhead, fine grain clock or power gating can be adapted, 
increasing system complexity further. A dedicated PMU is 
necessary to orchestrate the assignment of V levels along with 
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Table 2: Summary of WDR and big.LITTLE architecture designs based on A15 and A7 processor configuration. 

Figure 2: Oracular greedy optimization to find the most energy-efficient
processor configuration per interval in big.LITTLE, WDR, and WDR-DRS 
architecture. 
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deactivation of idle functional blocks or memory banks [12] [9]. 
Since low-V operation is more sensitive to any source of noise, 
V noise due to power management (i.e., power gating) should 
be taken into account. Similarly, controlling clock skew 
complicates placement and routing [12] [9]. 
 

IV.� EVALUATION METHODOLOGY 
A.� Power Management Algorithm  

The power management algorithm is a key player in the 
evaluation of big.LITTLE and WDR architectures. The 
algorithm determines big/LITTLE configuration or DVFS state 
per execution interval. There are various methods to predict/find 
the optimal V/F state and core configuration for each interval, 
based on the execution history. To provide a fair and accurate 
comparison of big.LITTLE and WDR architectures, 
independent of the algorithm in use, we assume that the optimal 
configuration at every interval is known in advance. We employ 
oracular greedy optimization to extract the best core 
configuration (i.e., big or LITTLE) along with optimal V/F state 
for big.LITTLE; the optimal V/F state for WDR; and the 
optimal V/F state along with best configuration of active 
resources across all cores for WDR-DRS - all per execution 
interval (i.e., local optima). To find the configuration of 
maximum energy efficiency, we use ������	 as our energy 
efficiency metric instead of MIPS�	
to emphasize 
performance. 

Figure 2 demonstrates the execution trajectory under orac-
ular optimization over consecutive execution intervals. For ex-
ample, for WDR, in each interval we exhaustively simulate all 
possible V and F pairs. At the end of each interval, (i) we calcu-
late the  ������	 for each V/F pair; (ii) we extract the V/F 
pair to deliver the maximum  ������	 in that particular inter-
val; (iii) we checkpoint the architected state corresponding to 
the selected V/F configuration; (iv) we continue with the simu-
lation for the next interval starting from the checkpoint from 

(iii). We repeat these steps for each interval, until the application 
terminates. A similar greedy framework applies for big.LITTLE 
and WDR-DRS to characterize the most energy efficient con-
figuration on a per execution interval basis.  

B.� Architecture Simulation Environment 
To evaluate WDR, we deploy a quad-core Cortex-A15. Each 
core is three-wide issue with 32KB private L1-D and L1-I 
caches, and a shared 2MB L2 cache with snoop-based MESI 
protocol. For WDR-DRS, we add new configurations to the 
WDR platform by scaling processor resources, such as ALU, 
ROB, LSQ, and L2 cache. Our platform for big.LITTLE 
architecture includes two clusters of four cores. The big cluster 
includes a quad-core Cortex-A15 (similar to the WDR 
configuration); the LITTLE cluster, four in-order Cortex-A7 
cores. Table 2 summarizes the simulation parameters. 

We use gem5 full system simulator [18] augmented with 
our oracular power management algorithm. We rely on McPAT 
[19] to estimate the power consumption of Cortex-A15 and Cor-
tex-A7 configurations at 22nm. We have modified McPAT to 
support different V and F levels for accurate power estimation 
at different DVFS states. Table 2 includes all regular V/F states 
in WDR (to cover both super- and near-threshold regions), and 
big.LITTLE architectures. Since we target mobile platforms, we 
use moby benchmarks [20] that incorporate popular android ap-
plications from Google Play Store, and bbench benchmarks 
Adobe, Bbench, Baidumap, Frozen bubble, K9mail, King soft 
office, Net ease, Sina weibo, and Mxplayer (denoted by ADOB, 
BBCH, BDMP, FZBB, K9ML, KSFC, NTES, SNWB, and 

Table 4: The LITTLE core configurations in big.LITTLE architecture.  
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Table 3: WDR-DRS configurations 

Figure 3: Energy efficiency of big.LITTLE (BL) versus WDR. BL-ideal, BL-A3Swch, and BL-A4Swch correspond to big.LITTLE with no switching 
overhead, switching overhead modeled after AMBA3, and AMBA4, respectively. WDR-ideal, and WDR-DRS ignore the power overhead incurred by a 
practical WDR implementation.  

���

���

���

���

���� ���� ���	 
��� ���� �
� ��� ��� ��	� ���

�
��
��
��
	

������ ! ������� ! ����"#$% ����&#$% ������

2015 33rd IEEE International Conference on Computer Design (ICCD) 307



MXPR). In addition, we study 10 representetive single-threaded 
applications from SPEC2006 benchmark suite [21], including 
both compute- and memory-bound benchmarks: bzip2, gcc, 
soplex, mcf, libquantum, lbm, milc, hammer, and astar.  

 
V.� EVALUATION 

In this section, we quantitatively compare and contrast the 
energy efficiency of WDR and big.LITTLE architectures in 
terms of ������	.  

A.� Ideal big.LITTLE versus Ideal WDR  
Figure 3 demonstrates energy efficiency in terms of  ������	 
for our multi-threaded benchmarks. We consider different 
configurations: BL-ideal, BL-A3Swch, and BL-A4Swch 
correspond to big.LITTLE with no switching overhead, 
switching overhead modeled after AMBA3, and AMBA4, 
respectively. WDR-ideal, and WDR-DRS ignore the power 
overhead incurred by a practical WDR implementation. BL-
ideal ignores both the power and performance overhead of 
switching a process between big and LITTLE cores. All data is 

normalized to the ������	
of BL-ideal. Depending on the 
application, BL-ideal can achieve by up to 16% higher energy 
efficiency than WDR-ideal (for NTES). Similarly, WDR-ideal 
can achieve by up to 15% higher energy efficiency than BL-
ideal (for FZBB). We observe that, on average, BL-ideal is as 
energy efficient as WDR-ideal although they take very 
different approaches in improving energy efficiency.  

BL-ideal and WDR-ideal achieve similar energy efficiency 
levels while operating at different V/F states. Figure 4 demon-
strates the percentage of processor residency time in each V/F 
state under BL-ideal and WDR-ideal. Figure 4(a) shows the % 
time spent at four different V/F states for big.LITTLE. “B-
1.8,1.6,1.4GHz” corresponds to p(ower)-states of the big core at 
1.8GHz, 1.6GHz and 1.4GHz; “B-1.2,1.0,0.8 GHz”, at 1.2GHz, 
1.0GHz, and 0.8GHz, respectively. Similarly, “L-1.2,1.0GHz” 
corresponds to p-states of the LITTLE core at 1.2GHz, and 
1.0GHz; “L-0.8,0.6,0.4GHz”, at 0.8GHz, 0.6GHz, and 0.4GHz. 
Figure 4(b) captures the % time spent at the four V/F states for 
WDR. The high V states of WDR, “WDR-1.8,1.6,1.4GHz” and 

                                                                  (a)                                                                                                                    (b) 
Figure 4: Fraction of time spent in different V/F states of big.LITTLE (a) and WDR (b) architectures, to achieve the energy efficiency reported in Figure 3.
The shaded boxes show the % time spent in LITTLE cores for big.LITTLE, and in NTV for WDR, respectively. 
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“WDR1.2,1.0,0.8GHz”, have direct correspondents in big.LIT-
TLE. “WDR-0.6GHz” and “WDR-0.4,0.2GHz”, on the other 
hand, demarcate the near-threshold V (NTV) states. We observe 
that, overall, WDR achieves higher energy efficiency by spend-
ing more time in high performance, high V states which incur 
higher power consumption than NTV states. On average, 
WDR spends 77% of time in these V/F states with F>=0.8GHz, 
and only 23% in NTV states with F<=0.6GHz. The power con-
sumption in NTV states is low, however, so is the performance 
due to the low operating F. Accordingly, NTV states cannot im-
prove the energy efficiency in most intervals. WDR boosts the 
energy efficiency mainly by running the applications faster in 
high V states most of the time, to compensate for the relatively 
higher power consumption. On the other hand, big.LITTLE 
achieves a similar level of energy efficiency by spending more 
time than WDR in lower power/performance states. The 
big.LITTLE architecture spends 52% of time in its big core V/F 
states, and 48% in the LITTLE core V/F states (i.e., using the 
LITTLE cores). Although the execution on the LITTLE cores 
takes longer, the power savings dominate. Thus, the overall en-
ergy efficiency improves. In terms of performance, WDR al-
ways outperforms the big.LITTLE architecture, on average by 
14%. However, both achieve similar energy efficiency in terms 
of ������	. 
WDR with Dynamic Resource Scaling (WDR-DRS): Figure 
3 characterizes the energy efficiency of dynamic resource 
scaling (DRS) at NTV states of WDR-ideal, WDR-DRS. To 
evaluate WDR-DRS, we added three new configurations, listed 
in Table 3, which represent an extension to the original WDR 
configuration (i.e., configuration 1). For configurations 2 and 3, 
we scale the issue width, the number of ALUs, the number of 
ROB and LSQ entries by a factor of 2/3 and 1/3 in comparison 
to the configuration 1, respectively. Although it is possible to 

apply DRS on both high V and NTV states, we confined our 
analysis to NTV states to conduct a fair comparison with 
big.LITTLE. The new NTV configurations include the baseline 
NTV states and the combination of each V/F state with each 
DRS configuration, resulting in 6 new NTV states. As shown in 
Figure 3, we observe that applying dynamic resource scaling 
on WDR (WDR-DRS) improves ������ by 2% compared 
to WDR-ideal, on average, across all configurations.  
Single-Threaded Applications: Figure 6 shows the energy 
efficiency of single-threaded applications from SPEC2006 
under different big.LITTLE and WDR configurations. In 
big.LITTLE, only one big and one LITTLE core are active, 
hence the switching happens between these two cores. For 
WDR, only one (big core correspondent) core is active. We 
observe that the energy efficiency of single-threaded 
applications follows a similar trend as multi-threaded 
applications. On average, WDR-ideal and WDR-DRS achieve 
2% and 1% lower  ������	 than BL-ideal, respectively. 
 

B.� Energy Overhead of big.LITTLE versus WDR 
 

Impact of switching overhead of big.LITTLE architecture  
on MIPS2/W: Figure 3 demonstrates the energy efficiency of 
big.LITTLE architecture when we account for the overhead of 
switching between LITTLE and big clusters. During the 
switching period, both clusters are on and consume power, 
although they do not execute the application. Switching impairs 
energy efficiency by consuming power during the transition, 
and by increasing the execution time due to the cluster 
migration. There are two mainstream implementations for inter-
cluster interconnect: AXI interconnect using AMBA3 and CCI-
400 interconnect using AMBA4. We studied the overhead under 
both. Figure 3 shows ������	 of BL-A3Swch and BL-
A4Swch that use AMBA3 and AMBA4 buses, respectively. 

Figure 7: Sensitivity of MIPS2/W to the power overhead of WDR of 10%, 20% and 30%. 

Figure 8: MIPS2/W comparison of big.LITTLE (BL) supporting CPU migration and WDR supporting per-core voltage domains 
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The switching overhead under AMBA3 is higher than under 
AMBA 4, as it needs software intervention to orchestrate the 
writeback of dirty cache lines to memory. This takes on average 
about 1.4ms for a 2MB L2 cache when switching from the big 
to the LITTLE cores, and about 0.4ms for a 512KB L2 cache 
when switching from the LITTLE to the big cores. AMBA4, on 
the other hand, relies on hardware-based cache coherence which 
eliminates communication with memory during the transition, 
thus takes less time -- 33us on average. Accordingly, the 
switching overhead of big.LITTLE reduces its energy 
efficiency (under ideal conditions) by 4% (3%) for AMBA3 
and 2%(1%) for AMBA4, on average, for multi- (single-) 
threaded applications, as depicted in Figure 3 (Figure 6).  
Impact of the size of the little core on MIPS2/W: In Figure 5, 
we study the impact of the size of the LITTLE cores on  
big.LITTLE’s energy efficiency. We study eight different 
configurations, as shown in Table 4, where BL-cfg1 
corresponds to the original cortex-A7. As shown in Figure 5, as 
the size of the LITTLE core decreases, the energy efficiency of 
big.LITTLE architecture degrades, resulting in upto 47% 
lower  ������ when compared to BL-ideal. 
Impact of power overhead of a practical WDR 
implementation on MIPS2/W: In Figure 7, we study the impact 
of the power overhead of a practical WDR implementation on 
the energy-efficiency. We study three different cases to incur 
10%, 20% and 30% power overhead. As shown in Figure 7, as 
the power overhead due to implementation complexity 
increases, the energy efficiency of WDR decreases. It results in 
up to 25% lower ������	 compared to the WDR-ideal.  
MIPS2/W comparison of big.LITTLE supporting CPU 
migration and WDR supporting per-core V domains: Up to 
this point, we analyzed a big.LITTLE architecture with cluster 
migration, as shown in Figure 1(a), and a WDR design with a 
single V domain. Figure 8 depicts the energy efficiency of 
big.LITTLE under CPU migration (Figure 1(b)), and WDR, 
under per-core V domains. We observe that the energy 
efficiency of big.LITTLE with CPU migration and WDR with 
per-core V domains follows a similar trend to big.LITTLE 
with cluster migration and WDR with single V domain. 
 
 

VI.� CONCLUSION 
This paper compares and contrasts single-ISA heterogenous and 
wide dynamic range (WDR) architectures in terms of energy 
efficiency, focusing on mobile applications. We observe that 
WDR processors facilitating dynamic resource sharing can 
deliver energy efficiency close to single-ISA heterogeneous 
processors, depending on the power overhead of circuit 
implementation to support wide-range DVFS. 
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