Comparison of Single-ISA Heterogeneous versus Wide Dynamic Range Processors for Mobile Applications

Hamid Reza Ghasemi¹, Ulya R. Karpuzcu², Nam Sung Kim³

¹University of Wisconsin ²University of Minnesota ³University of Illinois

Motivation

- Mobile applications demand a wide dynamic operating range
- How to provide a wide dynamic operating range?
 - Wide Dynamic Range (WDR) processors
 - Limited Dynamic Voltage Frequency (DVFS) scaling
 - Diminishing dynamic V (and thus F) range
 - Challenging minimum safe V scaling for memory
 - Single-ISA Heterogeneous Processors featuring two types of cores
 - Complex out-of-order (OoO) cores optimized for performance
 - Simple in-order cores optimized for power
 - Dynamic Resource Scaling (DRS)
 - Scaling processor resources to match workload characteristics
 - Selective activation of resources

Executive Summary

- We compare and contrast single-ISA heterogeneous and WDR architectures in terms of
 - Design challenges
 - Energy efficiency

considering implementations augmented w/ DRS.

• We observe that WDR processors augmented w/ DRS and single-ISA heterogeneous architectures can deliver similar energy efficiency.

Design Challenges

	WDR	Single-ISA Heterogeneous
Software support		Task migration Switching control between cores
Microarchitecture	Big OoO core	(big) OoO core + (little) in-order core
Cache design	Separate V domain Larger SRAM cells (possibly of higher transistor count)	Private L2 caches (for clusters of big and little cores)
Fully associative	Larger cells	
resources	Separate V domains	
Combinational	Larger devices	
logic	Separate V domains	
	Multi-level shifters	
Hardware	Power gating support	Coherent interconnection network
overhead	Dedicated power management unit (PMU)	Concrete interconnection network

Design Challenges

	WDR	8.]		A CONTRACTOR OF		
Software support		ror Rate 0.6 0		, o o o o o o o		
Microarchitecture	Big OoO core	iming Eri 0.4		000000000000000000000000000000000000000		
Cache design	Separate V domain Larger SRAM cells (possibly of higher transistor count)	0.0 0.2	.45	0.50	0.55	0.60
Fully associative resources	Larger cells Separate V domains			Vdd	(V)	
Combinational logic	Larger devices Separate V domains					
Hardware overhead	Multi-level shifters Power gating support Dedicated power management unit (PMU)	Cohere	ent inte	rconnec	tion netv	vork

Design Challenges

big.LITTLE: DynamicTask Scheduling

How to ensure data coherency upon migration?

big.LITTLE: DynamicTask Scheduling

Cluster Migration

- BIG and LITTLE cores form separate clusters
- One cluster can be active at a time
 - Power-gate inactive cluster
- Task migration
 - Both clusters become active
- Interconnect btw clusters sets migration overhead
- OS (Power Management Unit) switches clusters
 - If lowest V/F of BIG delivers lower energy efficiency, switch to highest V/f of LITTLE

big.LITTLE: DynamicTask Scheduling

- BIG and LITTLE cores paired to form a logical core
- One physical core (per pair) can be active at a time
 - Power-gate inactive core
- OS (Power Management Unit) switches cores
 - Track load on a per core basis

Evaluation Setup

- Platforms
 - WDR as ARM Cortex-A15
 - ARM's big.LITTLE as single-ISA heterogeneous processor
 Cortex-A15 + Cortex-A17
- Gem5 cycle accurate full-system simulator
 - Augmented with oracular power managament policy
- McPAT to model power consumption at 22nm
- Benchmarks
 - Moby suite
 - Includes Popular Android applications from Google Play Store
 - Single-threaded applications from SPEC2006

Oracular Greedy Power Management

- Covers big.LITTLE, WDR, WDR+DRS platforms
- Find the most energy-efficient processor configuration per interval
 - Simulate all processor configurations per quantum
 - Select the configuration of maximum energy efficiency
 - Next interval starts from the checkpoint induced by selected configuration

NTES: BL-ideal is more energy-efficient than WDR-ideal by 16%

FZBB: WDR-ideal is more energy-efficient than BL-ideal by 15%

On average, WDR-ideal is as energy-efficient as BL-ideal

% time spent in different V/F states: big.LITTLE

On average: 52% of time in big core, 48% in LITTLE core V/F states

% time spent in different V/F states: WDR

On average: 77% in V/F states with F>=0.8GHz 23% in NTV states with F<=0.6GHz

Switching Overhead: big.LITTLE

Both clusters stay on during switching

Switching Overhead: big.LITTLE

A(MBA)3: Software intervention needed to orchestrate write-back 1.4 (0.4)ms for 2MB (512KB) L2 A(MBA)4: Hardware-based cache coherence 33μs

Switching Overhead: big.LITTLE

Energy efficiency (under ideal conditions) reduces on average by 4% for A3 2%for A4

WDR + DRS

WDR + DRS

When augmented by DRS, WDR's energy efficiency increases by 2%

Power Overhead of Practical WDR

Power Overhead of Practical WDR

Energy efficiency can decrease by up to 25%

Conclusion

- We compare and contrast single-ISA heterogeneous and WDR architectures in terms of
 - Design challenges
 - Energy efficiency

considering implementations augmented w/ DRS.

• We observe that WDR processors facilitating DRS can deliver energy efficiency very close to single-ISA heterogeneous processors.

Comparison of Single-ISA Heterogeneous versus Wide Dynamic Range Processors for Mobile Applications

Hamid Reza Ghasemi¹, Ulya R. Karpuzcu², Nam Sung Kim³

¹University of Wisconsin ²University of Minnesota ³University of Illinois

Processor Configurations

WDR	big.Ll	TTLE	Memory Subsystem			
Core type: Cortex-A15	Big core type: Cortex-A15	Little core type: Cortex-A7	IL1/DL1	32KB/4-Way/64B 3cycles		
3-wide issue	3-wide issue	2-wide issue	IL1/DL1	32KB/4-Way/64B 3cycles		
160-entry register file	160-entry register file	32-entry register file	Coherency Protocol	Snoopy-based MESI		
128 ROB	128-entry ROB	-	L2 little cluster	512KB/8-way/64B, 10 cycles		
4 cores	4 cores in big cluster	4 cores in little cluster	L2 big cluster	2MB/8-way/64B, 12 cycles		
Regular V/F states: (1.8GHz,0.9V)~ (0.8GHz,0.65V)	Regular V/F states: (1.8GHz,0.9V)~ (0.8GHz,0.65V)	Regular V/F states: (1.2GHz,0.9V)~ (0.4GHz,0.65V)	L2 WDR	2MB/8-way/64B, 12 cycles		
Near-threshold V/F states: (0.6GHz,0.6V)~ (0.2GHz,0.53V)	-	-	-	-		

Dynamic Resource Scaling Configurations

Configuration	Width	ALU	ROB	LSQ	L2 cache
Configuration 1	3	3	36	24	2 MB
Configuration 2	2	2	24	16	1 MB
Configuration 3	1	1	16	8	512 KB

To have a fair comparison against big.LITTLE, we consider the DRS configurations only at NTV

Single Threaded Applications

On average: WDR achieves 1-2% lower energy efficiency than BL-ideal

Different Configurations for LITTLE Core

Config.	issue width	ALU	L2 (KB)	L1D (KB)	L1I (KB)	INT Reg.	Float Reg.
Cfg1 (A7 core)	2	2	512	32	32	32	32
cfg2	2	1	512	32	32	32	32
cfg3	1	1	512	32	32	32	32
cfg4	1	1	256	32	32	32	32
cfg5	1	1	256	16	32	32	32
cfg6	1	1	256	16	16	32	32
cfg7	1	1	256	16	16	16	32
cfg8	1	1	256	16	16	16	16

Sensitivity to Different Little Core Configurations

As the size of the LITTLE core decreases, the energy efficiency degrades by up to 47%

big.LITTLE w/ CPU migration vs. WDR w/ per-core V domains

Energy efficiency follows a similar trend to big.LITTLE w/ cluster migration vs. WDR w/ single V domain

Comparison of Single-ISA Heterogeneous versus Wide Dynamic Range Processors for Mobile Applications

Hamid Reza Ghasemi¹, Ulya R. Karpuzcu², Nam Sung Kim³

¹University of Wisconsin ²University of Minnesota ³University of Illinois

