ThermoGater: Thermally-Aware On-Chip Voltage Regulation

S. Karen Khatamifard, Longfei Wang[†], Weize Yu[†] Selçuk Köse[†], Ulya R. Karpuzcu

University of Minnesota {**khatami**, ukarpuzc}@umn.edu [†]University of South Florida

{longfei, weizeyu}@mail.usf.edu

kose@usf.edu

26/6/2017

- How to maximize power efficiency?
 - Tailor the voltage to spatio-temporal changes in workload

- How to maximize power efficiency?
 - Tailor the voltage to spatio-temporal changes in workload
- On-chip voltage regulation enables fast, fine-grain voltage control.

- How to maximize power efficiency?
 - Tailor the voltage to spatio-temporal changes in workload
- On-chip voltage regulation enables fast, fine-grain voltage control.
- Power-limited computing platforms of today feature many on-chip regulators.

- How to maximize power efficiency?
 - Tailor the voltage to spatio-temporal changes in workload
- On-chip voltage regulation enables fast, fine-grain voltage control.
- Power-limited computing platforms of today feature many on-chip regulators.
- On-chip voltage regulators
 - Convert power from an external energy source to the processor
 - Power conversion loss is inevitable and sizable

- How to maximize power efficiency?
 - Tailor the voltage to spatio-temporal changes in workload
- On-chip voltage regulation enables fast, fine-grain voltage control.
- Power-limited computing platforms of today feature many on-chip regulators.
- On-chip voltage regulators
 - Convert power from an external energy source to the processor
 - Power conversion loss is inevitable and sizable
 - Lost power gets dissipated as heat
 - Small regulator footprint \rightarrow potential thermal hotspots

- How to maximize power efficiency?
 - Tailor the voltage to spatio-temporal changes in workload
- On-chip voltage regulation enables fast, fine-grain voltage control.
- Power-limited computing platforms of today feature many on-chip regulators.
- On-chip voltage regulators
 - Convert power from an external energy source to the processor
 - Power conversion loss is inevitable and sizable
 - Lost power gets dissipated as heat
 - Small regulator footprint \rightarrow potential thermal hotspots

ThermoGater

Architectural governor to orchestrate thermally-aware on-chip regulation.

- Many regulators dispersed across chip → maximize physical proximity to load
 - Enables **fast** response time in tailoring operating point to load activity
 - Mitigates voltage noise

- Many regulators dispersed across chip → maximize physical proximity to load
 - Enables **fast** response time in tailoring operating point to load activity
 - Mitigates voltage noise
- Regulator Power conversion efficiency: $\eta = P_{out}/P_{in}$
 - Due to inevitable conversion loss, eta typically is less than 100%
 - Lost power is dissipated as heat
 - eta evolves as a function of microarchitectural activity in the load block

- Many regulators dispersed across chip → maximize physical proximity to load
 - Enables **fast** response time in tailoring operating point to load activity
 - Mitigates voltage noise
- Regulator Power conversion efficiency: $\eta = P_{out}/P_{in}$
 - Due to inevitable conversion loss, eta typically is less than 100%
 - Lost power is dissipated as heat
 - eta evolves as a function of microarchitectural activity in the load block
 - Regulators are calibrated to reach peak eta at specific activity
 - Deviation in activity from the calibrated point degrades eta
 - Even the peak eta barely exceeds 90%

26/6/2017

- Many regulators dispersed across chip → maximize physical proximity to load
 - Enables **fast** response time in tailoring operating point to load activity
 - Mitigates voltage noise
- Regulator Power conversion efficiency: $\eta = P_{out}/P_{in}$
 - Due to inevitable conversion loss, eta typically is less than 100%
 - Lost power is dissipated as heat
 - eta evolves as a function of microarchitectural activity in the load block
 - Regulators are calibrated to reach peak eta at specific activity
 - Deviation in activity from the calibrated point degrades eta
 - Even the peak eta barely exceeds 90%

How to sustain operation at peak eta?

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

- Sustain operation at peak eta
 - By selective shut-down, i.e., gating of component regulators
 - As a function of changes in microarchitectural activity

- Sustain operation at peak eta
 - By selective shut-down, i.e., gating of component regulators
 - As a function of changes in microarchitectural activity

- Sustain operation at peak eta
 - By selective shut-down, i.e., gating of component regulators
 - As a function of changes in microarchitectural activity

- Sustain operation at peak eta
 - By selective shut-down, i.e., gating of component regulators
 - As a function of changes in microarchitectural activity

- Sustain operation at peak eta
 - By selective shut-down, i.e., gating of component regulators
 - As a function of changes in microarchitectural activity

- Sustain operation at peak eta
 - By selective shut-down, i.e., gating of component regulators
 - As a function of changes in microarchitectural activity

The Case for Temperature-Aware Regulator Gating

- Sustain operation at peak eta
 - By selective shut-down, i.e., gating of component regulators
 - As a function of changes in microarchitectural activity

Gating Policy Design Space

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

Voltage noise ~ 16.8%

Voltage noise only

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

Voltage noise ~ 16.8%

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

Voltage noise ~ 16.8%

Temperature only

26/6/2017

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

26/6/2017

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

ISCA'17

Experimental Setup

- IBM POWER8 like 8-core processor
- 96 on-chip regulators, in 16 domains.
- Architectural simulator: SniperSim
- Power simulator: McPAT (MR2 version)
- Thermal simulator: HotSpot
- Voltage noise simulator: VoltSpot
- Benchmarks: Splash2X

Γ													
		0 711	- -5		• \	•		• \	•7		• ~ r	• • 8	
		•	•		•	•		•	•		•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	
]	[]3	}]	L3	}]		;;]	Ľ	3_	
\underline{c}						N	C						Ŋ
Σ		3	}		[3]	}		[]	;		[]3	3	Σ
		-0-	•	ם ו	-0-	•	0	-0-	•		-	0	
	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•		•	•	•		•	•	
	C(or(el		ore	e2		or(e3	<u>C</u> (or	e4	

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

ISCA'17

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

ThermoGater (TG) Policies

- Keep always as many active regulators as required at peak eta: N
 - Track microarchitectural activity
 - Turn more regulators on (off) under high (low) activity

ThermoGater (TG) Policies

- Keep always as many active regulators as required at peak eta: N
 - Track microarchitectural activity
 - Turn more regulators on (off) under high (low) activity
- For a given N, which regulators to select for turning on/off?
 - Constraint: prevent both hotspots and voltage emergencies
 - Different ways to enforce this constraint leads to different TG policies

- Assumption: oracular knowledge about
 - Output power demand
 - Temperature of all regulators under all possible gating decisions
 - Potential voltage emergencies

- Assumption: oracular knowledge about
 - Output power demand
 - Temperature of all regulators under all possible gating decisions
 - Potential voltage emergencies
- Observations
 - Voltage emergencies are short (~ ns).
 - Thermal emergencies are long (~ ms).
 - Voltage emergencies are rare

- Assumption: oracular knowledge about
 - Output power demand
 - Temperature of all regulators under all possible gating decisions
 - Potential voltage emergencies
- Observations
 - Voltage emergencies are short (~ ns).
 - Thermal emergencies are long (~ ms).
 - Voltage emergencies are rare
- Oracular TG Policy
 - (I) Always mimics temperature-only
 - (II) On a voltage emergency, switches all regulators on

13

26/6/201

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

ISCA'17

14

26/6/2017

Both thermal and voltage profiles under Oracular TG deviate from the respective best-case profiles by less than 0.1%

- Challenge: How to predict
 - Output power demand
 - Temperature of all regulators under all possible gating decisions
 - Potential voltage emergencies

- Challenge: How to predict
 - Output power demand
 - Temperature of all regulators under all possible gating decisions
 - Potential voltage emergencies
- Power demand prediction
 - Keep a short history of power demand (at a few previous decision points)
 - Take Weighted Moving Average (of power demand history)

- Challenge: How to predict
 - Output power demand
 - Temperature of all regulators under all possible gating decisions
 - Potential voltage emergencies
- Power demand prediction
 - Keep a short history of power demand (at a few previous decision points)
 - Take Weighted Moving Average (of power demand history)
- Temperature prediction
 - Read current temperature from on-chip sensors
 - Use a simple linear model
 - Rank anticipated temperatures at the next decision point

26/6/2017

- Challenge: How to predict
 - Output power demand
 - Temperature of all regulators under all possible gating decisions
 - Potential voltage emergencies
- Power demand prediction
 - Keep a short history of power demand (at a few previous decision points)
 - Take Weighted Moving Average (of power demand history)
- Temperature prediction
 - Read current temperature from on-chip sensors
 - Use a simple linear model
 - Rank anticipated temperatures at the next decision point
- Voltage emergency detection
 - Deploy a predictive per-core voltage emergency detector

16

26/6/2017

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

ISCA'17

Both thermal and voltage profiles under Practical TG closely track the respective best-case profiles, as well

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

ISCA'17

Impact on Aging

- Utilization per regulator is not uniform throughout execution
- Higher regulator utilization near cooler regions such as memory
 - TG mimics temperature-only policy by default
 - Periodic gating decision interval is based on temperature
 - Gating based on voltage is event-driven
- Aging rate increases with both utilization and temperature
 - Higher utilization near cooler regions likely to balance out aging

10

26/6/2017

Conclusion

- ThermoGater
 - An architectural governor for practical, thermally-aware regulator gating
 - Sustains operation at peak power conversion efficiency
 - Mitigates regulator-induced thermal emergencies
 - Considers the impact on voltage noise

Conclusion

- ThermoGater
 - An architectural governor for practical, thermally-aware regulator gating
 - Sustains operation at peak power conversion efficiency
 - Mitigates regulator-induced thermal emergencies
 - Considers the impact on voltage noise
- Practical ThermoGater policies can
 - Sustain operation at 1% of the peak power conversion efficiency
 - Keep the temperature only 0.6°C higher than the best-case thermal profile
 - Keep the voltage noise only 0.2% higher than the best-case voltage profile

For questions or feedback, please contact

<u>khatami@umn.edu</u> <u>ukarpuzc@umn.edu</u>

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

ISCA'17

ThermoGater: Thermally-Aware On-Chip Voltage Regulation

S. Karen Khatamifard, Longfei Wang[†], Weize Yu[†], Selçuk Köse[†], Ulya R. Karpuzcu

University of Minnesota {khatami, ukarpuzc}@umn.edu

⁺University of South Florida

{longfei, weizeyu}@mail.usf.edu kose@usf.edu

26/6/2017

