
2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2773488, IEEE
Transactions on Multi-Scale Computing Systems

On Approximate Speculative Lock Elision
S. Karen Khatamifard* Ismail Akturk† Ulya R. Karpuzcu*

* University of Minnesota † University of Missouri
{khatami,ukarpuzc}@umn.edu akturki@missouri.edu

Abstract—Each synchronization point represents a point of serialization, and thereby can easily hurt parallel scalability. As
demonstrated by recent studies, approximating, i.e., relaxing synchronization by eliminating a subset of synchronization points
spatio-temporally can help improve parallel scalability, as long as approximation incurred violations of basic execution semantics
remain predictable and controllable. Even if the divergence from fully-synchronized execution renders lower computation accuracy
rather than catastrophic program termination, for approximation to be viable, the accuracy loss must be bounded. In this paper, we
assess the viability of approximate synchronization using Speculative Lock Elision (SLE), which was adopted by hardware transactional
memory implementations from industry, as a baseline for comparison. Specifically, we investigate the efficacy of exploiting semantic
and temporal characteristics of critical sections in preventing excessive loss in computation accuracy, and devise a light-weight,
proof-of-concept Approximate Speculative Lock Elision (ASLE) implementation, which exploits existing hardware support for SLE.

Index Terms—Approximate Computing, mutual exclusion, parallel scalability.

F

1 INTRODUCTION

A simple type of synchronization, mutual exclusion, is crucial
for the correct execution of parallel programs. Mutual exclusion
restricts accesses (which involve updates) to shared data objects
to one parallel task at a time. Lock-based synchronization serves
this purpose. Before updating shared data objects, each parallel
task has to first lock the critical section, where the respective
data objects reside, to prevent simultaneous update attempts from
other tasks. A typical parallel program may incorporate multiple
critical sections protected by locks, which can be interleaved with
each other in different ways. Independent of the frequency of
occurrence or interleaving, each lock imposes a total or partial
order on the execution of parallel tasks. Ergo, each lock represents
a point of serialization, and thereby can easily hurt the scalability
of parallel programs.

To enhance parallel scalability in the face of inevitable mutual
exclusion, recent studies [29], [25], [28], [15] proposed to approx-
imate mutual exclusion by eliminating a subset of locks spatio-
temporally. The idea is to exploit the inherent noise tolerance of
the emerging R(ecognition), M(ining), and S(ynthesis) applica-
tions [8] in mitigating approximation incurred violations of basic
parallel execution semantics. RMS algorithms are iterative and
often probabilistic to process massive yet noisy data. The solution
space usually features a range of valid outputs [9]. Therefore,
RMS applications can tolerate inaccuracies emanating from the
data flow, as opposed to the control [37], [20], [36], [10]. In
other words, RMS applications can mask approximation incurred
semantic violations only if the divergence from fully-synchronized
execution manifests as inaccuracies in the data flow. Even if
approximation does not result in catastrophic program termination,
for approximate mutual exclusion to be viable, the accuracy loss
must remain bounded.

State-of-the-art optimizations for mutual exclusion focus on
elimination of redundant, i.e., unnecessary, synchronization events
– thereby, serialization points – without compromising compu-
tation accuracy [16], [27], [21], [3], [2]. Approximate mutual

exclusion can complement these techniques by eliminating more
synchronization points (in addition to the redundant) as long as
the approximation incurred loss in computation accuracy remains
at acceptable levels.

Approximation can apply to classic mutual exclusion imple-
mented by locks, and as a more scalable alternative, to speculative
(lock-based) synchronization such as Transactional Memory (TM)
or Speculative Lock Elision (SLE) [16], [34], [14], [21], [27].
In this paper, we assess the viability of approximate mutual
exclusion by approximating SLE, which was adopted by hardware
transactional memory (HTM) implementations from industry [39].
In the following, we will refer to this HTM based baseline for
comparison as SLE in short. Under SLE, parallel tasks do not
attempt to lock critical sections before updates to shared data.
Instead, they directly enter the critical section by speculating
that no other task would attempt a simultaneous update. While
correct speculation can eliminate serialization due to lock-based
synchronization, misspeculation can result in conflicting accesses
to shared data, which in turn can corrupt data values. SLE has
to carefully track potential misspeculation to be able orchestrate
recovery upon detection of misspeculation. To this end, all updates
by speculative accesses should be buffered, and only reflected to
the architectural state (i.e., committed) once speculation is deemed
correct.

Approximate Speculative Lock Elision (ASLE), the focus of
this study, translates into spatio-temporal omission of conflict
detection and/or recovery upon misspeculation – only if poten-
tial loss in computation accuracy, as induced by potential data
corruption due to conflicting accesses, remains acceptable. There
is no need to buffer speculative data in this case as there is no
need to recover. As a result, ASLE can cut-off the overhead
incurred by conflict detection, speculative storage, and recovery
(upon misspeculation).

In the following, by exploring the trade-off space of com-
putation accuracy versus approximation-enabled speed-up, we
assess the feasibility of Approximate spatio-temporal Speculative
Lock Elision, ASLE. In accordance with recent work [29], [28],

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2773488, IEEE
Transactions on Multi-Scale Computing Systems

2

[15], [13], we observe that, frequently enough, approximation
induced data races manifest as corruption in data flow, hence, as
degradation in computation accuracy. Our main contribution lies
in the feasibility analysis of approximation. Specifically:
• We investigate the efficacy of exploiting semantic and tempo-
ral characteristics of critical sections (i.e., transactions in the
context of TM) in controlling the degree of approximation, i.e.,
in preventing excessive loss in computation accuracy.

• We devise a light-weight Approximate Speculative Lock Eli-
sion (ASLE) implementation, which exploits existing hardware
support for HTM.

• We quantitatively compare and contrast ASLE with SLE,
which does not compromise computation accuracy as opposed
to ASLE.

• We provide practical guidelines for ASLE, based on our
findings.
In the rest of the paper, Section 2 covers the motivation and

background; Section 3, practical knobs and policies to control
and to bound the accuracy loss under ASLE along with practical
limitations; Sections 4 and 5, the evaluation of the viability of
ASLE; Section 8, the summary of our findings; and Section 6,
related work.

2 BACKGROUND & MOTIVATION

2.1 Synchronization as a Barrier to Parallel Scalability

0
20

40
60

80
10

0

thread

tim
e

sp
en

t i
n

sy
nc

hr
on

iz
at

io
n

(%
)

2 4 8 16 32 64

barnes
fluidanimate

histo
kmeans

ssca2
tpacf

utilitymine

Fig. 1: % time overhead of synchronization.

For a representative set of RMS applications, Figure 1 captures
how the time overhead of synchronization evolves as the number
of threads (as a measure of the degree of parallelism) increases1.
The y-axis depicts, for each thread count, the percentage of the
total execution time spent in synchronization events. Per Amdahl’s
Law, time spent in synchronization represents a loose upper bound
for approximation-enabled speed-up.

We observe that the synchronization overhead increases with
higher degrees of parallelism. This is because, under a fixed prob-
lem size, per thread work reduces as the thread count increases.
Accordingly, all threads, including the slowest, finish earlier,
and the overall execution time reduces. At the same time, with
increasing thread count, the number of sharers for a given chunk
of data tends to grow, giving rise to more frequent synchronization.
For example, as the thread count increases from 4 to 64, the

1We deploy the largest available input data set for each benchmark. Section 4
provides the experimental setup.

time spent in synchronization increases from 4.4% to 48.8%; from
0.2% to 16.5%; and from 10.2% to 74.1% for ssca2; fluidanimate;
and histo; respectively. This observation holds under an increasing
problem size (aka weak scaling), as well. In this case, the work
per thread remains constant where the thread count increases,
which oftentimes results in more sharers, therefore, more frequent
synchronization [4].

2.2 Approximate Mutual Exclusion: Challenges
Under approximate mutual exclusion, multiple independent ac-
cesses to modify shared data can proceed simultaneously. Conse-
quently, approximation may not only corrupt data values residing
in critical sections, but also prevent program termination, by e.g.,
giving rise to deadlocks. In mitigating approximation induced
violations of basic execution semantics, the inherent noise tol-
erance of RMS applications can only help if the violations do not
escape to control-flow, and do not result in excessive degradation
in computation accuracy by corrupting data-flow [37], [20], [36],
[10].

Under approximate mutual exclusion, even in the absence of
catastrophic program termination, the magnitude of data corrup-
tion becomes hard to predict. Worse, approximation induced data
value corruption can propagate to application outputs in numerous
ways [19], [30]. The magnitude of corruption at the outputs
depends on the sensitivity of program outputs to the corrupted
data values (residing in critical sections subject to approximate
mutual exclusion). During execution, this sensitivity may change
temporally, as well. Most iterative RMS algorithms progressively
refine their outputs each iteration, until meeting predefined conver-
gence criteria [7]. Accordingly, iterations further in the execution
may tolerate approximate mutual exclusion less than iterations at
the beginning. Therefore, approximation may also affect how fast
the algorithm converges to a solution.

2.3 Case Study: kmeans
A heavily used RMS application for data mining, kmeans, relies
on iterative refinement (in its most standard form) in partitioning
its input data points into k clusters. Every iteration enforces the
assignment of each input point to the closest possible cluster. The
algorithm terminates once assignments stabilize. kmeans from the
STAMP benchmark suite [22] incorporates three critical sections:

The first protects the assignment of new points to clusters:
1 *new_centers_len[index]

= *new_centers_len[index] + 1;
2 <Insert new point to list>

new_centers_len[index] keeps the number of points as-
signed to cluster index. Line 2 inserts the new point to the
list containing all points assigned to cluster index. Under
approximation, multiple threads may try to assign a point to
cluster index simultaneously. This may corrupt the update to
new_centers_len[index] in line 1, or the corresponding
insertion of the point to the cluster’s list in line 2. A corruption
in line 1 can easily render a lower (than actual) number of points
per cluster. A corruption in line 2, on the other hand, may skew
cluster centers. kmeans can mask both types of corruption due to
the iterative refinement of cluster centers until convergence.

The next critical section controls the distribution of input data
points among threads:
start = global_i;
global_i = start + CHUNK;

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2773488, IEEE
Transactions on Multi-Scale Computing Systems

3

In this critical section, each thread tries to get CHUNK number
of points for processing. The points reside in an array with
global_i pointing to the index of the last point already assigned
to a(nother) thread. Accordingly, the next thread in the row incre-
ments global_i by CHUNK. This critical section mainly affects
control flow. Under approximation, multiple threads may end up
processing the very same points. Such redundant processing may
easily increase the overall execution time particularly if the thread
count is no greater than the total number of chunks (i.e., number
of sets of points of size CHUNK). At the same time, the accuracy
may degrade as adding the same point to a cluster multiple times
may skew cluster centers.

The final critical section protects convergence control:
global_delta = global_delta + delta;

global_delta captures the total number of new cluster as-
signments overall; delta, in a given iteration. The algorithm
terminates if global_delta falls below a predefined threshold.
This critical section mainly affects control flow. Under approx-
imation, multiple threads may try to update global_delta
simultaneously. As a result, global_delta can possibly as-
sume a lower value than under fully-synchronized execution, and
trigger premature termination. Premature termination is likely
to boost performance due to faster, yet false, convergence. The
corresponding accuracy loss, however, may become excessive.
Adjusting the threshold or imposing a fixed number of iterations
may work better than approximate mutual exclusion in this case,
as we will demonstrate in Section 5.

3 APPROXIMATE SPECULATIVE LOCK ELISION

We will next analyze the viability of approximate synchroniza-
tion using Speculative Lock Elision (SLE), which was adopted
by hardware transactional memory implementations from indus-
try [39], as a baseline for comparison. In the following, we
will refer to this HTM based baseline for comparison as SLE
in short. The key difference of Approximate Speculative Lock
Elision (ASLE) from SLE is spatio-temporal omission of conflict
detection and/or recovery upon misspeculation – however, only
if potential loss in computation accuracy, as induced by potential
data corruption due to conflicting accesses, remains acceptable.

A key design question for ASLE hence becomes how to decide
where in program and when to turn off conflict detection and/or
recovery upon misspeculation – which is the equivalent of how to
select the locks to elide in approximating classic mutual exclusion.
The intuitive answer to this question is when the execution reaches
an inaccuracy-tolerant critical section. Recall that the tolerance of
the target application domain, RMS, to inaccuracy in computation
comes from (i) mostly probabilistic algorithms often using iter-
ative refinement; and (ii) inputs containing a very large number
of inaccurate, often redundant data elements. Due to (i), it is
barely possible to differentiate inaccuracy-tolerant critical sections
from others without analyzing program semantics. Unfortunately,
(ii) complicates the identification of inaccuracy-tolerant critical
sections further, as the inaccuracy-tolerance tends to change as
a function of inputs. Therefore, profiling-based identification of
inaccuracy-tolerant critical sections becomes inevitable. These
constraints do complicate programming. The proof-of-concept
ASLE implementation covered in this study relies on profiling-
based identification of inaccuracy-tolerant critical sections, similar
to [23], [30], [25].

After identifying inaccuracy-tolerant critical sections, the next
design question becomes how to turn off conflict detection and/or
recovery upon misspeculation within this subset of critical sections
– which is the equivalent of how to elide the locks in approximat-
ing classic mutual exclusion. A critical section may lend itself well
to approximation, however, the corresponding accuracy loss may
fluctuate at runtime due to variations in the degree of parallelism,
size and characteristics of input data, or environmental conditions.
Therefore, enforcing approximation at compile time may not
always be safe. Instead, by communicating potentially inaccuracy-
tolerant critical sections subject to approximation to the hard-
ware, we can devise adaptive policies to control the degree of
approximation at runtime. To this end, we can adapt programming
language or instruction set extensions as suggested by [12], [32],
[31], [28]. To demarcate potentially inaccuracy-tolerant critical
sections subject to approximation, similar to AMD’s ASF [11]
or Intel’s TSX [39] for SLE, the proof-of-concept ASLE imple-
mentation relies on compiler-managed instruction set extensions
APPROX_ACQUIRE and APPROX_RELEASE.

We will next discuss the remaining open questions of how to
control the degree of approximation and how to prevent excessive
accuracy loss under approximation.

3.1 Knobs to Control the Degree of Approximation

ASLE can degrade computation accuracy only if multiple parallel
tasks attempt to enter a critical section simultaneously, i.e., if
accesses to shared data conflict. The magnitude of accuracy loss is
likely to grow with an increasing number of conflicting accesses.
In other words, approximation in higher contention critical sec-
tions is likely to render higher loss in computation accuracy as
observed by previous work [15]. Based on this insight, we will
next investigate how contention profiles can serve as a knob to
adjust the accuracy loss due to approximation. In the following,
we will refer to the number of conflicting accesses as a proxy for
contention. On the other hand, the share of conflicting accesses
over all accesses constitutes the conflict rate.

To quantify how strongly correlated contention and accuracy
loss are, we experiment2 with a very aggressive type of approx-
imate (speculative) mutual exclusion, where we never check for
conflicts – and hence, (can) never trigger recovery. In the rest of
the paper, we will refer to this as Brute-force Lock Elision (BLE).
BLE is more likely to result in conflicts than ASLE. Under classic
mutual exclusion, BLE corresponds to permanent spatio-temporal
elision of the lock for the duration of the entire program. For
this analysis, we only consider inaccuracy-tolerant critical sections
(i.e., critical sections lending themselves well to approximation),
as identified by profiling. For the representative RMS benchmarks
deployed in this study we identify three distinctive cases:

i. Persistently low contention critical sections where the conflict
rate assumes a very low value throughout execution, which does
not change with contention.

ii. Relatively low contention critical sections where accuracy
loss is strongly correlated (i.e., changes almost linearly) with
conflict rate. Generally, conflict rate increases with contention,
and a higher conflict rate renders higher accuracy loss.

ii. High contention critical sections where accuracy loss is
strongly correlated (i.e., changes almost linearly) with conflict

2We deploy the largest available input data sets and 64 threads. Section 4
details the experimental setup.

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2773488, IEEE
Transactions on Multi-Scale Computing Systems

4

rate. Generally, conflict rate increases with contention, and a
higher conflict rate renders higher accuracy loss.

We conclude that, modulo i., contention or conflict rate can
serve as a practical knob to control the accuracy loss under
approximation by ASLE. For i. BLE is a better option than ASLE,
as we will demonstrate in Section 5.

3.2 A Proof-of-Concept ASLE Implementation

Retry Threshold

Conflict History

C
o
m
p
a
r
a
t
o
r

Conflict

Retry

A
p
p
r
o
x
i
m
a
t
e

Conflict Detection

Logic

Fig. 2: A light-weight approximation extension (depicted in gray)
to speculative lock elision (SLE).

Speculative Lock Elision (SLE) has to carefully track potential
conflicts to be able orchestrate recovery upon conflict detection.
The baseline SLE implementation already features Conflict
Detection Logic which we can exploit to keep track of
contention in controlling the degree of approximation. Figure 2
details a light-weight approximation extension (shaded in gray)
to SLE in hardware. Under SLE (which does not feature any of
the shaded approximation extensions) Conflict Detection
Logic asserts the Conflict signal upon detection of conflict-
ing accesses. Assertion of Conflict triggers the Retry signal
in order to have conflicting accesses to shared data re-attempted.

Approximate SLE, ASLE, on the other hand, can oppor-
tunistically omit these Retry attempts, as long as degradation
in computation accuracy due to conflicts remains at accept-
able levels. The proof-of-concept ASLE implementation uses
the very same Conflict Detection Logic as SLE to
detect conflicts. However, under approximation, assertion of
Conflict triggers the Retry signal only if the conflict-
ing accesses can lead to excessive loss in computation accu-
racy. To control the degree of accuracy loss, i.e., approxima-
tion, ASLE relies on two buffers: Retry Threshold and
Conflict History. Retry Threshold and Conflict
History represent special purpose programmable registers per
core. Retry Threshold controls the frequency of approxima-
tion, while Conflict History keeps track of contention.

Conflict History is an N-bit shift register, and stores
the N most recent values of the Conflict signal. Under ASLE,
each thread attempts to to update the architectural state once done
with the execution of a critical section subject to approximation.
At this stage, if there was no conflict, i.e., the thread finds the
Conflict signal not set, no retry is necessary (i.e., Retry
signal is not set). Otherwise, if there was a conflict, i.e., the
thread finds the Conflict signal set, Retry is only triggered if
we disable approximation by resetting the Approximate signal
from Figure 2. We next look into how the proof-of-concept ASLE
implementation manages the Approximate signal.

3.3 Runtime Policies to Control Accuracy Loss

We set Approximate from Figure 2 as a function func of
how the number of conflicts (encountered during the N most
recent commit attempts, on a per core basis) compares to a given
threshold, which is stored in Retry Threshold. The number of
conflicts encountered during the N most recent commit attempts
corresponds to the number of 1’s in Conflict History. We
next devise several runtime policies (each featuring a different
func) which span the trade-off space of accuracy loss vs. speed-up
under approximation.

Under the first policy, we trigger Approximate if the
number of conflicts (encountered during the N most recent
commit attempts, on a per core basis) is Higher-Than Retry
Threshold. At the end of execution of each critical section
subject to approximation,

• if Conflict = 0: ASLE falls back to SLE (Case-1).
• if Conflict = 1 and Conflict History keeps a conflict
count lower than Retry Threshold: ASLE falls back to
SLE (Case-2).

• if Conflict = 1 and Conflict History keeps a
conflict count higher than Retry Threshold: by setting
Approximate (which in turn resets Retry), we let conflict-
ing tasks proceed without attempting retry (Case-3).

Higher-Than thereby enables approximation only if con-
tention, i.e., the number of conflicting accesses, exceeds a pre-
set threshold. Therefore, Higher-Than is biased to approximate
higher contention critical sections, which render a higher number
of conflicts. Approximating predominantly higher contention crit-
ical sections may deliver higher speed-up (as higher contention
implies more retries which ASLE can effectively cut-off), however,
the accompanied loss in accuracy may become hard to bound.
Under Higher-Than, a higher value of Retry Threshold leads
to less frequent approximation, and therefore, (more likely) to less
accuracy loss.

We define the dual policy of Higher-Than as Lower-Than, by
inverting the sense of the threshold logic for Case-2 and Case-3.
Under Lower-Than,

• if Conflict = 0: ASLE falls back to SLE.
• if Conflict = 1 and Conflict History keeps a conflict
count higher than Retry Threshold: ASLE falls back to
SLE.

• if Conflict = 1 and Conflict History keeps a
conflict count lower than Retry Threshold: by setting
Approximate (which in turn resets Retry), we let conflict-
ing tasks proceed without attempting retry.

Contrary to Higher-Than, Lower-Than is biased to approximate
lower contention critical sections, which render a lower number of
conflicts. Approximating predominantly lower contention critical
sections may deliver modest speed-up, however, the accompanied
loss in accuracy is likely to be modest, as well. Under Lower-
Than, a higher value of Retry Threshold leads to more
frequent approximation, and therefore, (more likely) to more
accuracy loss.
Putting It All Together: Under Higher-Than, ASLE reacts to high
contention, and triggers approximation mainly to boost perfor-
mance. Under Lower-Than, ASLE reacts to low contention, and
triggers approximation mainly to keep the accuracy loss bounded,
which is accompanied by a more modest speed-up than Higher-
Than. Under both policies, Retry Threshold controls the

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2773488, IEEE
Transactions on Multi-Scale Computing Systems

5

frequency of approximation, therefore, the loss in accuracy. Fine-
tuning the value of Retry Threshold, possibly dynamically at
runtime, can help prevent excessive loss in computation accuracy.

An application can feature many critical sections, each ex-
hibiting different contention characteristics. Figure 2 shows basic
hardware support to keep track of a single critical section. How-
ever, if critical sections of an application are sufficiently apart
from each other in time, this hardware can also accommodate
accurate support for multiple critical sections. Otherwise, we can
introduce an array of Conflict History along with an array
of Retry Threshold, each array element to keep track of a
separate critical section. RMS applications we experiment with
do not feature more than a few (static) inaccuracy-tolerant critical
sections, as Section 5 reveals.

3.4 Practical Limitations
Demand for application specific characterization: Not every
critical section lends itself well to approximation as demonstrated
in Section 2.3. Oftentimes, selection of locks subject to elision
demands significant semantic knowledge about the application.
Profiling may help, but cannot cover all possible use cases. For
ASLE policies , we relied on profiling, first, to identify critical sec-
tions which (when relaxed) do not lead to catastrophic termination,
in the form of non-termination or excessive degradation in output
accuracy. We excluded these critical sections from approximation.
For the rest, we identified, through a more detailed profiling
step, higher contention critical sections and adjusted the ASLE
thresholds accordingly, based on the average contention rates.
Confining approximation-induced inaccuracies in data-flow:
Exploiting contention profiles, ASLE policies can only qualita-
tively control the accuracy loss. While ASLE policies (particularly,
the Lower-Than variants) can probabilistically prevent excessive
accuracy loss, they fail short of bounding its magnitude. To be
able to bound the magnitude of accuracy loss, we need to quan-
titatively characterize how approximation-induced inaccuracies in
the data flow propagate to the application output to degrade the
output accuracy. An important step in addressing this fundamental
limitation is adapting previous work such as [10], [17] to enforce
approximation incurred inaccuracies confined in data flow where
RMS applications can tolerate corruption, as opposed to control
flow. Decoupling data flow from control is already a challenging
task beyond the scope of this paper.
Need for safety-nets: Even if we effectively managed to confine
approximation-induced inaccuracies to data flow of RMS appli-
cations, there is no deterministic guarantee that data flow errors
do not result in catastrophic program termination. Accordingly,
for ASLE to be viable, we still need to devise safety-nets (e.g.,
based on checkpoint-recovery) to facilitate recovery without com-
promising design complexity. A more viable solution is enabling
approximation only under very strong statistical guarantees.

4 EVALUATION SETUP

Benchmarks: As captured by Table 1, we deploy a represen-
tative set of RMS applications from PARSEC [5], Parboil [35],
STAMP [22], SPLASH2x [38], and RMS-TM [18] suites. barnes
and fluidanimate represent n-body simulations. histo computes a
large, 2-D saturating histogram. kmeans implements an iterative
clustering algorithm. ssca2 consists of four graph kernels; we use
the first kernel which constructs an efficient graph data structure.
tpacf generates a histogram capturing the spatial distribution of

astronomical observations. utilitymine, an Associate Rule Mining
(ARM) application, extracts high-utility itemsets from a database.
Approximation Targets: We confine approximation to critical
sections (CS) protected by locks or transactions. The applications
feature critical sections of different length, (dynamic execution)
frequency, and contention characteristics, as depicted in Table 2.
We focus on critical sections exercised frequently enough to qual-
ify as potential performance bottlenecks. Further, if approximation
of a critical section is likely to result in catastrophic program
termination, we exclude it from consideration.
Metrics to Quantify Accuracy Loss: To quantify the accuracy
loss due to approximation, we adapt accuracy metrics from Mis-
ailovic et al. [24] along with Akturk et al. [1]. The last column of
Table 1 depicts the accuracy metrics.
Simulation Infrastructure: We deploy Sniper [6] for microarchi-
tectural simulation, as configured in Table 3. We implement all
policies from Section 3 in Sniper. The baseline SLE implementa-
tion represents a TSX-like design [39], which we evaluate under
both eager and lazy conflict detection. Not to compromise simula-
tion speed, Sniper tends to model the interactions among threads
at a coarse-granularity, which may lead to implicit serialization.
A similar restriction applies to many microarchitectural simula-
tors. To mitigate this effect, we increase the simulator’s thread
synchronization frequency to its maximum value. To establish
statistical significance of our results, we repeat each experiment
100 times, and report the mean. To capture the sensitivity of the
execution outcome to inputs, we use a range of input data-sets for
each application, as tabulated in the third column of Table 1. Our
simulations involve up to 64 threads. For Parboil applications we
implemented the pthread versions, and made sure that the pthread
implementation outperformed the omp-based baseline not to favor
any ASLE policy.

5 EVALUATION

5.1 Impact on Execution Time
We first compare and contrast the execution time under classic
locking (Classic) with speculative lock elision (SLE) (imple-
mented in hardware), and with persistent, spatio-temporal brute-
force lock elision (BLE), for each application. We deploy the
largest input data set for each benchmark. For each lock im-
plementation, we report parallel efficiency as the ratio of the
speed-up (over the single-threaded execution) to the maximum
possible speed-up for a given thread count. For example, if an 64
threaded run of a benchmark delivers 50× speed-up over single-
threaded execution, parallel efficiency becomes 50/64 ≈ 78%. In
Figure 3, the y-axis provides the % parallel efficiency, where
each bar corresponds to a benchmark, and each stack depicts
the % improvement in parallel efficiency under a particular lock
implementation.

We observe that lock elision (be it BLE or SLE) does not
improve the efficiency of barnes. For fluidanimate, BLE improves
the efficiency by 8.8% over SLE, which itself delivers 2.3% more
efficiency over Classic. These efficiency numbers evolve to 49.0%
and 51.1% for histo; to 29.7% and 39.81% for ssca2; and to
18.2% and 53.8% for tpacf. Finally, utilitymine experiences 77.5%
efficiency under SLE, and an additional 11.3%, under BLE for 8-
threads (maximum number of threads for this application). For
kmeans, we restrict the comparison to a single iteration of the
application (as explained in Section 5.4). In this case, SLE delivers
21.5%; BLE, 52.9% efficiency.

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2773488, IEEE
Transactions on Multi-Scale Computing Systems

6

Benchmark Description Input files Accuracy metric

barnes (splash2x)
n-body Simulation simsmall of splash2x avg. relative deviation

simmedium of splash2x of coordinates
simlarge of splash2x

fluidanimate (RMS-TM 3)
n-body Simulation simsmall of parsec 2.0 avg. relative deviation

simmedium of parsec 2.0 of coordinates
simlarge of parsec 2.0

histo (Parboil 2.5)
Saturating Histogram -i img.bin avg. relative deviation

-i uniform.in of bin values
-i guassion.in

kmeans (STAMP)
Data Mining -m15 -n15 -t0.001 -i random-n2K ratio of wrong

-m15 -n15 -t0.0001 -i random-n16K clusterings
-m15 -n15 -t0.00001 -i random-n65K

ssca2 (STAMP)
Graph Analysis -s13 -i1.0 -u1.0 -l3 -p3 ratio of differences

-s16 -i1.0 -u1.0 -l3 -p3 in the number of edges
-s18 -i1.0 -u1.0 -l3 -p3

tpacf (Parboil 2.5)
Two Point Angular -n 100 -p 487 avg. relative deviation
Correlation Function -n 100 -p 4096 of bin values

-n 100 -p 10391

utilitymine (RMS-TM 3) Association Rule Mining data...nitems_10.patlen_6 0.01 avg. relative deviation
data...nitems_1.patlen_6 0.01 of utilities

TABLE 1: RMS benchmarks deployed.

Benchmark File(line) Length Frequency Cont. Protection

barnes code.C(721) Long Medium Low global min and max

fluidanimate

pthreads.cpp(635) Short High Low cell density
pthreads.cpp(641) Short High Low cell density
pthreads.cpp(744) Short High Low cell acceleration
pthreads.cpp(761) Short High Low cell acceleration

histo main.c(101) Short High Low bins update
kmeans normal.c(168) Long High High center update
ssca2 c...Graph.cpp(475) Long High High add edge to list
tpacf model com...cpu.c(52) Short High High bins update
utilitymine utility.cpp(281) Short Medium Low update utility

TABLE 2: Critical sections subject to
approximation.

of cores 65
Core 4-issue wide OoO
Private L1D 32KB 8-way, 64B

LRU, 1-cycle hit
Private L1I 32KB 8-way, 64B

LRU, 1-cycle hit
Private L2 512KB 8-way, 64B

LRU, 11-cycle hit
Shared L3 130MB 16-way, 64B

LRU, 30-cycle hit
Main memory 90ns round-trip
Technology 22nm
Voltage/ 1.0V/1.053GHz
frequency

TABLE 3: Architectural
parameters.

0
10

20
30

40
50

threads

sp
ee

d−
up

1 2 4 8 16 32 64

Classic
SLE
BLE

(a) speed-up

0 10 20 30 40 50 60

0
20

40
60

active threads

%
 o

f e
xe

cu
tio

n
tim

e

Classic
SLE
BLE

(b) concurrency profile

0
5

10
15

20
25

30

threads

sp
ee

d−
up

1 2 4 8 16 32 64

Classic
SLE
BLE

(c) speed-up

0 10 20 30 40 50 60

0
10

20
30

40
50

active threads

%
 o

f e
xe

cu
tio

n
tim

e

Classic
SLE
BLE

(d) concurrency profile

Fig. 4: Speed-up and concurrency profile for barnes (a,b) and ssca2 (c,d) .

BLE
SLE
Classic

%
 p

ar
al

le
l e

ffi
ci

en
cy

0
20

40
60

80
10

0

ba
rn

es

flu
ida

nim
at

e

his
to

km
ea

ns

ss
ca

2
tp

ac
f

ut
ilit

ym
ine

Fig. 3: Parallel efficiency under lock elision.

Figures 4a and 4b provide the corresponding speed-up and
concurrency profiles for barnes. The speed-up is normalized to
the execution time of the single-threaded run under Classic, and
reported as a function of the thread count on the x-axis. From

Figure 4a, we observe that lock elision does not deliver any speed-
up for this application. The concurrency profile from Figure 4b –
which captures the % of execution time (as depicted on the y-axis)
the application features a specific number of concurrently active
threads (as depicted on the x-axis) – verifies this trend. Figures 4c
and 4d provide the same analysis for ssca2, which, as opposed to
barnes, demonstrates enhanced concurrency under lock elision.

5.2 Impact on Accuracy Loss

Figure 5 captures how BLE changes the computation accuracy to
accompany the (potential) efficiency improvement from Figure 3.
Classic and SLE do not compromise the computation accuracy.
The analysis reflects 64-threaded runs for the largest input set. The
figures report the distribution of % accuracy loss over 100 runs.
No accuracy loss applies to barnes , since the execution trajectory
under BLE closely follows the execution trajectory under Classic
or SLE. fluidanimate (Figure 5a) shows a modest accuracy loss –

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2773488, IEEE
Transactions on Multi-Scale Computing Systems

7

0.00 0.02 0.04 0.06 0.08

0
5

10
15

20

% accuracy loss

oc

cu
re

nc
e

(a) fluidanimate

0.0002 0.0006 0.0010

0
5

10
15

20
25

% accuracy loss

oc

cu
re

nc
e

(b) histo

0.0020 0.0030 0.0040 0.0050

0
5

10
15

% accuracy loss

oc

cu
re

nc
e

(c) ssca2

0.016 0.018 0.020

0
5

10
15

% accuracy loss

oc

cu
re

nc
e

(d) tpacf

Fig. 5: Accuracy loss under brute-force lock elision, BLE, to accompany the efficiency profiles from Figure 3.

less than 0.092% – due to the very low contention of its locks. The
accuracy loss remains negligible for histo, as well (Figure 5b).
This is because histo features a very large number of bins (in
the order of hundreds), which decreases the probability of the
same bin being accessed by multiple threads, even under high con-
tention. We will provide a detailed accuracy analysis for kmeans
in Section 5.4. ssca2 exhibits an accuracy loss of 0.0031%, on
average. tpacf also has a histogram as its output, but suffers from
a significantly higher accuracy loss than histo due to the lower
number bins (in the order of 20) (Figure 5d). The % accuracy loss
distribution under utilitymine assumes a similar pattern to tpacf
over a range of [0.009− 0.011]% – although the utilities in the
output of utilitymine degrade slightly, the final high-utility itemsets
very closely follow the exact outcome, i.e., the outcome under
Classic or SLE. Overall, the modest % accuracy loss observed
across all applications renders the approximation-enabled parallel
efficiency enhancement under BLE viable (Figure 3).

5.3 Controlling Accuracy Loss
We next characterize how the trade-off space for % accuracy loss
vs. % (parallel) efficiency (Section 5.1) evolves under policies
from Section 3.3. We report % accuracy loss on the y-axis and %
efficiency on the x-axis. All simulations reflect 64-threaded runs,
using the largest input size. In the following, we only consider
applications with non-negligible contention. Figure 6 shows the
trade-off space under Higher-Than and Lower-Than policies,
considering different values of Retry Threshold for tpacf. In
this case, Conflict History keeps a very small number (of
ones) throughout the execution. We adjust the range for Retry
Threshold accordingly. For instance, Higher-Than 1 policy
enforces approximation only if the one count of Conflict
History is greater than 1, to render an ≈2.9× more accurate
result than under BLE, where efficiency falls by ≈30% beyond
BLE (H > 1 from Figure 6a). Lower-Than 1 policy, on the other
hand, renders an ≈1.9× more accurate result than under BLE,
where efficiency falls by more than 20% beyond BLE (H < 1 in
Figure 6b).

Following our observations from Section 3.1, we experiment
with larger values of Retry Threshold for the higher con-
tention application ssca2. Figure 6 depicts the trade-off space. In
this case, Higher-Than 45 (H > 45) policy improves the accuracy
by 37.3% over BLE, accompanied by a more than 5% reduction in
efficiency (Figure 6c). Lower-Than, H < 45 policy, on the other
hand, improves the accuracy by 66.3% over BLE, accompanied by
around 8% reduction in efficiency (Figure 6d).

Overall, we observe that this basic set of policies can span a
rich trade-off space, which we can exploit to deliver the optimal

accuracy loss vs. parallel scalability under varying application-
specific constraints. The programmer or the runtime can choose
between these two policies depending on the relative importance
of speed-up vs. accuracy.

5.4 Case Study: kmeans

2 4 6 8

0
5

10
15

relative speed−up

%
 a

cc
ur

ac
y

lo
ss

SLE
BLE

#iter=1

#iter=2

#ite
r=

11

Fig. 7: Trade-off space for kmeans.

Since kmeans relies on iterative refinement, by enforcing
a lower number of iterations until convergence than the fully-
synchronized baseline execution, we can trade accuracy for speed-
up, without approximating synchronization. To quantify this ef-
fect, we turned off the convergence check of the algorithm, and
manually enforced a fixed number of iterations (#iter) for each run,
under both SLE and BLE, for 64 threads. Figure 7 summarizes
our findings: Each point corresponds to a fixed iteration count,
#iter (which increases as we move from top-right to bottom-
left). The x-coordinate of each point captures the speed-up under
#iter; the y-coordinate, the corresponding % loss in accuracy. The
speed-up is reported with respect to the baseline SLE without any
approximation under the default iteration count until termination
(i.e., by enforcing the default convergence check). The speed-up
reduces with increasing values of #iter, the number of iterations
executed until termination. The triangle demarcates the outcome
under BLE; the % accuracy loss on the y-axis, the speed-up on the
x-axis. The red rectangle demarcates the region of “higher speed-
up at lower accuracy loss” than possible under BLE. We observe
that #iter= 2 indeed renders a point in this more favorable region
than BLE. Accordingly, enforcing a fixed number of iterations may
result in a better accuracy versus speed-up trade-off than possible
by enforcing BLE.

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2773488, IEEE
Transactions on Multi-Scale Computing Systems

8

20 30 40 50

0.
00

0
0.

00
5

0.
01

0
0.

01
5

% parallel efficiency

%
 a

cc
ur

ac
y

lo
ss

BLE
H>1
H>2
SLE

(a) Higher-Than

20 30 40 50

0.
00

0
0.

00
5

0.
01

0
0.

01
5

% parallel efficiency

%
 a

cc
ur

ac
y

lo
ss

BLE
H<3
H<2
H<1
SLE

(b) Lower-Than

30 32 34 36 38 400.
00

00
0.

00
10

0.
00

20
0.

00
30

% parallel efficiency

%
 a

cc
ur

ac
y

lo
ss

BLE
H>60
H>55
H>50
H>45
H>40
H>35
SLE

(c) Higher-Than

30 32 34 36 38 400.
00

00
0.

00
10

0.
00

20
0.

00
30

% parallel efficiency

%
 a

cc
ur

ac
y

lo
ss

BLE
H<35
H<40
H<45
H<50
H<55
H<60
SLE

(d) Lower-Than

Fig. 6: Trade-off space for tpacf (a,b) and ssca2 (c,d) .

5.5 Sensitivity Analysis
Figure 8 depicts how the distribution of % loss in accuracy
evolves with an increasing thread count for the largest input of
tpacf under BLE. A higher number of threads leads to a higher
number of conflicts, which progressively increases the % accuracy
loss. A similar trend applies for all of the RMS benchmarks we
experimented with.

0.005 0.010 0.015 0.020

0
20

40
60

80
10

0

% accuracy loss

oc

cu
re

nc
e

2
4
8
16
32
64

Fig. 8: Sensitivity of % accuracy loss to thread count.
However, the picture changes across different benchmarks

when we deploy different input sizes. We observe two distinct
patterns, as captured in Figure 9 for two representative applica-
tions, tpacf (Figure 9b) and ssca2 (Figure 9a), respectively. A
larger input size renders a higher % accuracy loss for ssca2, while
the opposite trend applies for tpacf.

−8 −7 −6 −5 −4 −3

0
10

20
30

40
50

60

log(accuracy loss)

oc

cu
re

nc
e

small
medium
large

(a) ssca2

0.000 0.005 0.010 0.015 0.020

0
20

40
60

80

% accuracy loss

oc

cu
re

nc
e

small
medium
large

(b) tpacf

Fig. 9: Sensitivity of % accuracy loss to input size.

So far, without loss of generality, for (A)SLE we assumed
Lazy conflict detection; i.e., conflict detection being fired at the
end of critical sections. Eager [26] conflict detection, on the
other hand, would trigger the Conflict signal immediately
upon identification of conflicts inside the critical section. The
performance of applications under these two policies may vary.
For instance, histo and tpacf show very similar parallel efficiency
under Eager to Lazy (with less than 0.5% difference), since they
both feature a very short critical section. For applications with

longer critical sections, such as ssca2, the difference becomes
more visible: for example, parallel efficiency of ssca2 improves
from 29.7% under Lazy to 33.2% under Eager conflict detection.

20 30 40 50

0.
00

0
0.

00
5

0.
01

0
0.

01
5

% parallel efficiency

%
 a

cc
ur

ac
y

lo
ss

BLE
H>1
H>2
SLE

(a) Higher-Than

20 30 40 50

0.
00

0
0.

00
5

0.
01

0
0.

01
5

% parallel efficiency

%
 a

cc
ur

ac
y

lo
ss

BLE
H<3
H<2
H<1
SLE

(b) Lower-Than

Fig. 10: Trade-off space for tpacf under Eager conflict detection .

Figure 10 depicts how the trade-off space of accuracy loss
versus parallel efficiency looks like under Eager conflict detection
for tpacf. Under Eager, ASLE still delivers a rich trade-off space
of accuracy vs. speed-up. A similar trade-off space applies for
other applications, as well. Comparing Eager and Lazy conflict
detection, only the range of parallel efficiency benefits varies.

6 RELATED WORK

Effective techniques to mitigate the overhead of synchroniza-
tion [3], [2], [33], including speculation [16], [27], [21], [34],
[14], eliminate unnecessary synchronization events without com-
promising accuracy. By eliminating even more synchronization
points, approximate synchronization can complement these tech-
niques [31], [25], [28], [15]. Under speculative synchronization,
parallel tasks (threads or transactions) proceed speculatively past
synchronization points. If speculation does not result in conflicting
accesses to shared data or violation of parallel execution seman-
tics, this class of techniques can eliminate serialization due to
synchronization, at the cost of extra storage for speculative state,
control logic to detect violations of parallel execution semantics,
and to orchestrate roll-back to a safe state and retry in case of
misspeculation. Approximation can mitigate (if not eliminate)
the overhead of storage, conflict detection, or recovery incurred
by speculation. While previous studies on approximate synchro-
nization focus mostly on programming language implications or
basic quantitative characterization [31], [25], [28], we explore a
transparent hardware extension to speculative lock elision in order
to orchestrate approximation.

7 DISCUSSION & FUTURE WORK

Under persistent high contention, due to a monotonic increase
in conflict count (and independent of the value of Retry

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2773488, IEEE
Transactions on Multi-Scale Computing Systems

9

Threshold) once conflict count exceeds Retry Threshold,
Higher-Than can get stuck at Case-3 (Section 3.3), i.e., fall
back to persistent, brute-force lock elision in space and time
(BLE). Symmetrically, Lower-Than can get stuck at SLE. Brute-
force lock elision is not always safe, and can easily lead to
excessive accuracy loss. On the other hand, SLE may render a too
conservative execution by blocking approximation opportunities.
We can avoid this by tracking the rate of change (i.e., the gradient)
of conflict count, and by re-interpreting Retry Threshold
to correspond to a threshold for the gradient, rather than for an
immediate value of conflict count. This insight would give rise to
two new policies, Gradient-Higher-Than and Gradient-Lower-
Than. In this case, Conflict History would log the history
of most recent N values of the conflict count in a shift buffer.
Gradient policies can then derive the rate of change from the
difference between the most and least recent values of the conflict
count. Under Gradient-Higher-Than (Gradient-Lower-Than),
we would elide the lock if the gradient exceeds (remains lower
than) the value of Retry Threshold. In this manner, ASLE
can better respond to fine grain changes in contention profiles.
At the same time, Gradient policies would barely demand any
profiling to determine the range for Retry Threshold, as all
we need to determine would be monotonicity.

The evaluated benchmarks in this paper (Section 5) do not
show any pathology to necessitate Gradient policies and perform
well under the lower complexity basic policies (Higher-Than and
Lower-Than). We hence leave further exploration to future work.

In this paper, we evaluated the basic idea using a hardware
implementation because hardware transactional memory (HTM)
is usually more efficient than software transactional memory,
and extension of already existing hardware support for HTM
in commercial systems to ASLE would be straight-forward, via
addition of two registers and a comparator per core. That said,
ASLE can also be implemented using Intel’s TSX extensions in
software. We believe that a hardware solution is less intrusive and
faster, since for example, there is no memory access involved to
update the conflict history which would be the case otherwise.

ASLE policies enable the user to adjust the level of approx-
imation by tuning the policy thresholds. In this manner, ASLE
can prevent excessive accuracy loss which is not the case for
BLE. ASLE does not always guarantee better accuracy at the same
performance level as BLE, but rather provides the user with the
option of choosing a feasible point from the accuracy-performance
trade-off space.

8 CONCLUSION

This study analyzes the viability of approximate speculative lock
elision for emerging recognition, mining, and synthesis applica-
tions. We compare and contrast the trade-off space of accuracy
loss versus approximation-enabled parallel efficiency to the exe-
cution outcome under persistent, brute-force spatio-temporal lock
elision. We investigate the efficacy of exploiting semantic and
temporal characteristics of critical sections to control the degree
of approximation.

We devise a basic set of policies which span the rich ac-
curacy loss vs. parallel scalability trade-off space under vary-
ing application-specific constraints. We observe that approximate
synchronization can be particularly beneficial for high-contention
critical sections, where the speculation overhead may impair
parallel efficiency. For these applications, a parallel efficiency

improvement of up to 35% at negligible accuracy loss is possible.
Otherwise, speculative techniques are more promising, since they
do not compromise accuracy. A notable reduction in execution
time due to approximation applies for the majority of the bench-
marks. For the remaining, we may still expect higher speed-up
with increasing degrees of parallelism per Amdahl’s Law.

REFERENCES

[1] I. Akturk, K. Khatamifard, and U. R. Karpuzcu, “On Quantification of
Accuracy Loss in Approximate Computing,” in 12th Annual Workshop
on Duplicating, Deconstructing and Debunking (WDDD), 2015.

[2] F. Allen, M. Burke, R. Cytron, J. Ferrante, and W. Hsieh, “A framework
for determining useful parallelism,” in International Conference on
Supercomputing (ICS), 1988.

[3] G. M. Baudet, “Asynchronous iterative methods for multiprocessors,”
Journal of ACM, vol. 25, no. 2, 1978.

[4] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,
P. Franzon, W. Harrod, J. Hiller, and S. Karp, “Exascale computing
study: Technology challenges in achieving exascale systems,” DARPA
Information Processing Techniques Office (IPTO) sponsored study, 2008.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” Princeton University,
Tech. Rep. TR-811-08, 2008.

[6] T. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level of
abstraction for scalable and accurate parallel multi-core simulation,” in
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2011, pp. 1–12.

[7] S. T. Chakradhar and A. Raghunathan, “Best-effort computing: Re-
thinking parallel software and hardware,” in Design Automation Con-
ference (DAC), 2010.

[8] Y.-K. Chen, J. Chhugani, P. Dubey, C. J. Hughes, D. Kim, S. Kumar,
V. Lee, A. Nguyen, and M. Smelyanskiy, “Convergence of recognition,
mining, and synthesis workloads and its implications,” Proceedings of
the IEEE, vol. 96, no. 5, 2008.

[9] V. Chippa, D. Mohapatra, and A. Raghunathan, “Scalable effort hardware
design: Exploiting algorithmic resilience for energy efficiency,” Design
Automation Conference (DAC), 2010.

[10] H. Cho, L. Leem, and S. Mitra, “Ersa: Error resilient system architecture
for probabilistic applications,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 31, no. 4, 2012.

[11] J. Chung, L. Yen, S. Diestelhorst, M. Pohlack, M. Hohmuth, D. Christie,
and D. Grossman, “Asf: Amd64 extension for lock-free data structures
and transactional memory,” in International Symposium on Microarchi-
tecture (MICRO), 2010.

[12] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An architectural
framework for software recovery of hardware faults,” in International
Symposium on Computer Architecture (ISCA), 2010.

[13] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large
scale distributed deep networks,” in International Conference on Neural
Information Processing Systems, 2012, pp. 1223–1231.

[14] A. Dragojevik, P. Felber, V. Gramoli, and R. Guerraoui, “Why STM can
be more than a research toy,” Communications of the ACM, vol. 54, no. 4,
2011.

[15] B. R. Feng Niu, C. Ré, and S. J. Wright, “Hogwild!: A lock-free approach
to parallelizing stochastic gradient descent,” in Neural Information Pro-
cessing Systems Conference (NIPS), 2011.

[16] M. Herlihy, J. Eliot, and B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in International Symposium on
Computer Architecture (ISCA), 1993.

[17] U. R. Karpuzcu, I. Akturk, and N. S. Kim, “Accordion: Toward Soft
Near-Threshold Computing,” in International Symposium on High Per-
formance Computer Architecture (HPCA), 2014.

[18] G. Kestor, S. Stipic, O. S. Unsal, A. Cristal, and M. Valero, “Rms-tm: A
transactional memory benchmark for recognition, mining and synthesis
applications,” in 4th Workshop on Transactional Computing, 2009.

[19] D. S. Khudia, B. Zamirai, M. Samadi, and S. A. Mahlke, “Rumba:
an online quality management system for approximate computing.”
International Symposium on Computer Architecture (ISCA), 2015.

[20] X. Li and D. Yeung, “Application-Level Correctness and its Impact
on Fault Tolerance,” in International Symposium on High Performance
Computer Architecture (HPCA), 2007.

[21] J. F. Martinez and J. Torrellas, “Speculative synchronization: programma-
bility and performance for parallel codes,” IEEE Micro Magazine,
vol. 23, no. 6, 2003.

2332-7766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2773488, IEEE
Transactions on Multi-Scale Computing Systems

10

[22] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp: Stanford
transactional applications for multi-processing,” in International Sympo-
sium on Workload Characterizationd (IISWC), 2008.

[23] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel:
Reliability- and accuracy-aware optimization of approximate computa-
tional kernels,” in International Conference on Object Oriented Program-
ming Systems, Languages, Applications (OOPSLA), 2014.

[24] S. Misailovic et al., “Quality of Service Profiling,” in International
Conference on Software Engineering (ICSE), 2010.

[25] S. Misailovic, S. Sidiroglou, and M. C. Rinard, “Dancing with Uncer-
tainty,” in ACM Workshop on Relaxing Synchronization for Multicore
and Manycore Scalability (RACES), 2012.

[26] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, D. A. Wood et al.,
“Logtm: log-based transactional memory.” in International Symposium
on High Performance Computer Architecture (HPCA), vol. 6, 2006, pp.
254–265.

[27] R. Rajwar and J. R. Goodman, “Speculative lock elision: enabling highly
concurrent multithreaded execution,” in International Symposium on
Microarchitecture (MICRO), 2001.

[28] L. Renganarayana, V. Srinivasan, R. Nair, and D. Prener, “Programming
with relaxed synchronization,” in ACM Workshop on Relaxing Synchro-
nization for Multicore and Manycore Scalability (RACES), 2012.

[29] M. C. Rinard, “Unsynchronized techniques for approximate parallel com-
puting,” in ACM Workshop on Relaxing Synchronization for Multicore
and Manycore Scalability (RACES), 2012.

[30] M. Ringenburg, A. Sampson, I. Ackerman, L. Ceze, and D. Gross-
man, “Monitoring and debugging the quality of results in approximate
programs,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2015.

[31] M. Rinnard, “Parallel synchronization-free approximate data structure
construction,” USENIX Workshop on Hot Topics in Parallelism, 2013.

[32] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general low-
power computation,” in Conference on Programming Language Design
and Implementation (PLDI), 2011.

[33] C. Segulja and T. S. Abdelrahman, “Architectural support for
synchronization-free deterministic parallel programming,” International
Symposium on High Performance Computer Architecture (HPCA), 2012.

[34] N. Shavit and D. Touitou, “Software transactional memory,” in ACM
Symposium on Principles of Distributed Computing (PODC), 1995.

[35] J. A. Stratton, C. Rodrigues, I. J. Sung, N. Obeid, L. W. Chang,
N. Anssari, G. D. Liu, and W. W. Hwu, “Parboil: A revised benchmark
suite for scientific and commercial throughput computing,” Center for
Reliable and High-Performance Computing, 2012.

[36] D. D. Thaker, D. Franklin, J. Oliver, S. Biswas, D. Lockhart, T. Metodi,
and F. T. Chong, “Characterization of error-tolerant applications when
protecting control data,” in International Symposium on Workload Char-
acterization (IISWC), 2006.

[37] V. Wong and M. Horowitz, “Soft error resilience of probabilistic infer-
ence applications,” in Workshop on Silicon Errors in Logic-System Effects
(SELSE), 2006.

[38] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-
2 Programs: Characterization and Methodological Considerations,” in
International Symposium on Computer Architecture (ISCA), 1995.

[39] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance evaluation
of intel transactional synchronization extensions for high-performance
computing,” in International Conference on High Performance Comput-
ing, Networking, Storage and Analysis (SC), 2013.

S. Karen Khatamifard received his BSc in Elec-
trical Engineering from Sharif University of Tech-
nology, Tehran, Iran, in 2013. He is now a Ph.D.
Candidate in the Department of Electrical En-
gineering at the University of Minnesota, Min-
neapolis. His primary research interests are im-
proving energy efficiency of computing, design-
ing application-specific hardware accelerators,
approximate computing, and reliability implica-
tions of process technology scaling.

Ismail Akturk is an Assistant Professor in the
Electrical Engineering and Computer Science
Department at University of Missouri, Columbia.
He received his Ph.D. from the University of
Minnesota, Twin Cities. His research interests
include improving energy efficiency, scalability
and fault tolerance of computing systems.

Ulya R. Karpuzcu is an assistant professor
of Electrical and Computer Engineering at the
University of Minnesota, Twin-Cities. She holds
an M.S. and Ph.D. in Electrical and Computer
Engineering from University of Illinois, Urbana-
Champaign. Her research interests span the im-
pact of technology on computing systems, en-
ergy efficient computer architectures, application
domain specific processors, hardware reliability,
approximate computing. She is a Fulbright fellow
and the recipient of NSF CAREER Award.

