AISC

Approximate Instruction Set Computer

Alexandra Ferrerón, Darío Suárez-Gracia Jesús Alastruey-Benedé, **Ulya R. Karpuzcu**

University of Zaragoza University of Minnesota, Twin-Cities

WAX'18, March 25 2018

Instruction Set Architecture (ISA)

- View from hardware stack:
 - Behavioral design specification
 - Determines hardware complexity
- View from software stack:
 - Definition of the machine capabilities
 - Determines functional completeness

Approximate Instruction Set Computer (AISC)

- Single-ISA heterogeneous fabric
- Each compute engine (core or fixed function) supports a subset of the ISA
 - Component (functionally-incomplete) ISA may overlap
 - Incomplete ISA can reduce microarchitectural complexity
 - thereby improve performance per Watt
- The union of incomplete ISA subsets renders a functionally complete ISA

Approximate Instruction Set Computer (AISC)

- Single-ISA heterogeneous fabric
- Each compute engine (core or fixed function) supports a subset of the ISA
 - Component (functionally-incomplete) ISA may overlap
 - Incomplete ISA can reduce microarchitectural complexity
 - thereby improve performance per Watt
- The union of incomplete ISA subsets renders a functionally complete ISA

Code that cannot be approximated can run at full accuracy

Improved energy efficiency if ISA-induced approximation is tolerable

Approximate Instruction Set Computer (AISC)

- How to determine incomplete, approximate ISA subsets?
 - •Vertical approximation:
 - Exclude less frequently used complex instructions
 - •Horizontal approximation:
 - •Simplifies each instruction, by e.g., precision reduction

- (a) Native
- (b) Vertical
 - (c) Horizontal (d) Horiz.+Vert.

(a) Native

(b) Vertical

(c) Horizontal (d) Horiz.+Vert.

double precision \rightarrow half-precision

DIV → MUL

Up to 37% energy cut at around 10% accuracy loss

Design Aspects

- Which subset of the ISA should each compute engine support?
- How to map instruction sequences to compute engines?
- How to keep the potential accuracy loss bounded?
- How to orchestrate migration of code sequences
 - from one compute engine to another within the course of computation
 - tolerance to noise may vary for different application phases

Design Aspects

- Which subset of the ISA should each compute engine support?
- How to map instruction sequences to compute engines?
- How to keep the potential accuracy loss bounded?
- How to orchestrate migration of code sequences
 - from one compute engine to another within the course of computation
 - tolerance to noise may vary for different application phases
- Most critical design aspect: migration granularity
 - A break-even point exists for migration granularity (and frequency)

AISC

Approximate Instruction Set Computer

Alexandra Ferrerón, Darío Suárez-Gracia Jesús Alastruey-Benedé, **Ulya R. Karpuzcu**

<u>ukarpuzc@umn.edu</u>

WAX'18, March 25 2018

Instruction Set Architecture (ISA)

