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Abstract
Emerging applications such as R(ecognition), M(ining), and

S(ynthesis) suit themselves well to approximate computing due
to their intrinsic noise tolerance. RMS applications process
massive, yet noisy and redundant data by probabilistic, often
iterative, algorithms. Usually the solution space has many
more elements than one, rendering a range of application
outputs valid, as opposed to a single golden value. A critical
step in translating this intrinsic noise tolerance to energy
efficiency is quantification of approximation-induced accuracy
loss using application-specific metrics. This article covers
pitfalls and fallacies in the development and deployment of
accuracy metrics.

1. Introduction & Background
In this paper, we refer to approximate computing to represent
a full bag of tricks – possibly spanning multiple levels of
the system stack – which exploit algorithmic noise tolerance
for energy efficiency. The bag of tricks encompasses various
degrees of approximation to trade off computation accuracy
for performance or power: precision reduction [25, 9, 19];
computation perforation [3, 20, 18]; relaxation of execution
semantics in the form of approximate consistency [12, 17, 16,
18] or hardware simplification [8, 2, 5, 6, 9]; and embrace of
errors [11, 7, 21, 10].

To be able to quantitatively characterize how the complex
trade-off space of accuracy vs. energy efficiency evolves under
each trick, we need robust metrics to capture approximation-
induced loss in computation accuracy. Table 1 depicts widely
adopted accuracy metrics classified according to the data
type of application outputs, considering example benchmarks
from Parsec [1], Splash2 [24], Rodinia [4], Parboil [22],
MineBench [15], and Stamp [13] suites.

Classes I and II generate numeric output data in scalar, or
multi-dimensional (set of vectors or matrix) formats. To quan-
tify approximation-incurred degradation, recent work deploys
variants of the distortion metric introduced by Misailovic et
al. [14]. Distortion is defined as the average, across all out-
put elements, of the deviation per numeric output element
from its exact (non-approximate) value. How the deviation per
output value is captured gives rise to the variation in distortion-
based metrics. For example, if deviation per output value
is calculated by the square of the difference between exact
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and approximate values, distortion falls back to mean square
error.

Class III encompasses clustering, data mining, searching,
and sorting applications which generate compound output
data. For example, ferret from Parsec conducts content-based
similarity search in an image database (Table 1). For each
query, a pre-set number of similar images – ranked by simi-
larity to the query image – constitutes the output. To quantify
approximation-incurred degradation, recent work relies on
metrics based on # mismatches between the exact and approx-
imate output image lists.

Class IV generates multi-media, i.e. image or video, output.
Recent work mostly deploys PSNR (Peak Signal to Noise Ra-
tio) to measure the approximation-induced degradation. How-
ever, the alternative metric, SSIM (Structural Similarity Index)
is shown to match human perception better than PSNR [23].

2. Fallacies & Pitfalls
In this section, we provide case studies to cover pitfalls and
fallacies in the development and deployment of accuracy met-
rics.

2.1. Validity vs. Accuracy

Under approximation, particularly under high-risk, high-
reward techniques such as approximate synchronization, exe-
cution may deviate from its exact trajectory in various ways,
possibly preventing program termination. Even if the program
terminates successfully, the output may become excessively
corrupt to be considered valid. Even worse, accuracy metrics
may not always be able to capture such invalid execution out-
come. This may leave us with accuracy metrics pointing to
negligible degradation for invalid output data. Application-
specific validity checks can remedy this problem.
Case Study 1: dedup from Parsec implements a file compres-
sion algorithm. The deviation in the output file size represents
the accuracy metric (Table 1). Under approximation, the file
size of an invalid output – a corrupt file – may even become
equal to the file size of the exact output. As a validity check,
we should try to decompress the output file before deploying
accuracy metrics. Depending on the magnitude of the corrup-
tion, decompression may not always be possible. Only upon
validating the decompressed file against the original, we can
start with the accuracy analysis.
Case Study 2: fluidanimate from Parsec simulates the phys-
ical interactions between a set of fluid particles within a
bounded space. The output tabulates positions (along with



Class Output Data Type Accuracy Metric Examples
Application (Suite) Domain Metric

I Numeric: scalar Deviation [14] in output value canneal (Parsec) Optimization Dev. in cost
dedup (Parsec) Compression Dev. in file size

II Numeric: multi- Distortion [14] based

fluidanimate (Parsec) n-body simulation Dist. in “body”

dimensional

barnes, water (Splash2) positions
bodytrack (Parsec) Computer Vision Dist. in
particlefilter (Rodinia) coordinates
cholesky, lu (Splash2) Linear Algebra Dist. in
histo, tpacf (Parboil) Histogram elements

III Compound

streamcluster (Parsec) Clusteringkmeans (Stamp) Based on
Based on # mismatches UtilityMine (MineBench) Data mining # mismatches
Positional error ferret (Parsec) Similarity search

radix (Splash2) Sorting Positional error

IV Multi-media
raytrace (Splash2) Computer Vision PSNR, SSIMPeak Signal to Noise Ratio (PSNR) volrend (Splash2)

Structural Similarity Index (SSIM) x264 (Parsec) Video Encoding

Table 1: Widely adopted accuracy metrics classified according to the data type of application outputs.

several other physical characteristics such as velocity or accel-
eration) of the particles at the end of the simulated time frame.
Under approximation, the reported positions may exceed the
boundaries of the simulated space to render an invalid output,
however, due to averaging-out effects (or due to relatively
small boundary overflows) distortion may fail to capture such
invalid execution. On top of this, approximate execution may
drop a subset of the simulated particles to render an incom-
plete, hence, invalid, output. We observed both types of invalid
outcome under approximate synchronization, where our distor-
tion metric (detailed below) reported negligible degradation.

Validity vs. Accuracy: Accuracy metrics may point to
negligible degradation even if the approximate execution
outcome is invalid, rendering application-specific validity
checks critical.
In the following, we confine our discussion to the accuracy

analysis of valid execution outcome only.

2.2. Absolute vs. Relative Loss in Computation Accuracy

Without loss of generality, we can devise both absolute and
relative accuracy metrics: For example, for Class I from Ta-
ble 1, we can directly deploy the scalar numeric output value
as the absolute accuracy metric. This translates into the out-
put file size for dedup. By evaluating the very same absolute
metric under the exact execution, we can explore the accuracy
vs. energy efficiency trade-off space for a given benchmark
and configuration. Oftentimes, however, we are interested in
how the trade-off space changes, considering different appli-
cations. Relative accuracy metrics can facilitate comparison
across multiple applications, by capturing the approximation-
incurred degradation relative to the exact outcome, on a per
application basis.
Case Study 3: For n-body simulation (fluidanimate), Fig-
ure 2 shows the coordinates of four sampled bodies (particles),
under exact and approximate execution, respectively. Under

approximation, each body moves in the direction of the arrows.
Accordingly, each body moves away by the very same distance
from its exact position.

Let us measure the deviation per body (Section 1) by
the relative displacement in x-axis, i.e. the ratio of the x-
displacement under approximation and the x-coordinate of
the exact position. This renders a percentage deviation of
0.2/0.1=200% for bodies B1 and B3; and of 0.2/0.9=22.3% for
bodies B2 and B4, respectively. The measured deviation for
B1 and B3 is significantly higher when compared to B2 and
B4, where each body moved away by the very same distance
from its exact position! Thus, we failed to capture the actual
deviation. This observation applies to the symmetrical analy-
sis on the y-axis. For the same x (or y) displacement, we will
always measure a larger deviation, the closer to the origin the
mis-placed body is. This problem persists for the alternative
definition for deviation, the relative change in the distance
from the origin, which captures the combined displacement
along multiple axes (and possibly accentuates the measure-
ment error). Both definitions rely on coordinates or distances
with respect to the origin, and thus, are oblivious to the size or
span of the simulated space. The situation gets even worse if
the baseline for normalization assumes a very close value to
zero. Changing the origin does not help. One way to mitigate
this problem is changing the baseline for normalization (i.e.
the denominator of the deviation metric) to the span (e.g. the
longest distance) of the simulated space.

Relative Metrics: The baseline for normalization should
not introduce any bias on deviation metrics (Section 1).
Otherwise, we can easily measure a significantly differ-
ent deviation for the very same actual degradation under
approximation.
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Figure 1: % accuracy loss of fluidanimate under approximate synchronization, considering three different metrics (Section 3).
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Figure 2: Case study 3, considering n-body simulation.

2.3. Averaging Effects

As depicted in Table 1, most classes of benchmarks generate
multi-dimensional numeric output data. In this case, distortion-
based metrics derive the cumulative degradation under approx-
imation by taking the average of deviation (Section 1) across
all elements constituting the output. Accordingly, distortion-
based metrics can easily mask the variation in the deviation
on a per element basis.
Case Study 4: Let us compare two execution outcomes for
fluidanimate under approximation: In the first scenario, all
particles shift by 1% with respect to their expected positions
under exact execution. In the second scenario, on the other
hand, only 1% of the particles move away from their exact
positions, but by much greater than 1%, such that both sce-
narios render the very same cumulative degradation of 1% –

as calculated by an averaging distortion metric. Depending
on the execution context, scenarios deemed equivalent by the
accuracy metric may associate with very different levels of
acceptability. To be able to differentiate between such scenar-
ios, we should devise variation-aware accuracy metrics. To
introduce variation-awareness to the distortion-based metric
from the case study, we can augment it with the maximum
of per-particle displacement and/or the fraction of displaced
particles.

Averaging Effects: Distortion-based metrics derive
approximation-incurred degradation by taking the average
of deviation (Section 1) across all elements constituting
the output; hence, can easily mask the variation in per-
element deviation, and report the same accuracy loss for
very different variation profiles. However, execution out-
comes deemed equivalent by such accuracy metrics can
associate with very different levels of acceptability. To
introduce variation-awareness, accuracy metrics should in-
clude extremes of per-element deviation and/or the fraction
of degraded elements.

2.4. (Non)Determinism under Approximation

High-risk, high-reward approximation techniques to embrace
errors or to relax basic execution semantics are of probabilistic
nature. So are the application domains which lend themselves
well to approximation. These applications may generate dif-
ferent outputs under the very same configuration. The com-
plication stems from not being able to guarantee, under the
exact execution, that no output exists to deliver a more ac-
curate result than an observed output. To mitigate this, we
need to tame the sources of non-determinism: We can enforce
single-threaded runs in extracting the outcome under the exact
execution. Moreover, we can configure the application to de-
liver the maximum possible output accuracy for a given input.
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To this end, for algorithms relying on iterative refinement, we
can remove any cap on the maximum number of iterations, or
tighten convergence criteria.

At the same time, we need to ensure statistical significance
of the estimated accuracy loss under approximation. To this
end, we can repeat the experiments for a given configuration
a preset number of times. Different applications and approx-
imation techniques may give rise to different spectra for the
execution outcome. We may observe no program termina-
tion, termination with consistently invalid outputs, valid out-
puts spanning a wide accuracy loss interval, or some mixture
thereof. Valid outputs shape the trade-off space of accuracy vs.
energy efficiency, however, the existence of non-terminating
and invalid executions suffice to render an approximation tech-
nique infeasible unless safety nets are present. Depending
on their complexity, safety nets incur an energy efficiency
overhead, which should be reflected to the trade-off space.
For example, if we rely on re-execution as a safety net upon
encounter with invalid or non-terminating cases, we should
report the power and performance overhead of re-execution,
weighed by the expected frequency of occurrence.
Case Study 5: Figure 1a captures how the percentage ac-
curacy loss in the outputs of fluidanimate change under ap-
proximate synchronization. Following the guidelines from
Section 2.2, the distortion-based accuracy metric, Mdistance,
captures the deviation per particle by the absolute distance
between exact and approximate positions normalized to the
maximum possible distance within the simulated space (i.e.
the diagonal of the bounding box of all particles). Experi-
ments 1-9 each corresponds to the relaxation (i.e. removal)
of a different synchronization point of the application1. Each
experiment is repeated 100 times. For each experiment, the
y-axis depicts the # occurrences (over 100 repetitions) of a
% accuracy loss value2. We observe that the % accuracy loss
does not span a wide interval. However, depending on the
context, even such numerically negligible degradation may
be barely acceptable. This is why it is always safer to report
the span of accuracy loss than a single point in the trade-off
space. In total, we run 900 experiments with one resulting in
non-terminating, 14, in invalid execution (Section 2.1). The
outcome of these 15 experiments is not visible in Figure 1a.
Case Study 6: In Figure 3, we compare the outcome under
approximate synchronization (Experiment 3 from Figure 1a)
with the outcome by excluding any approximation. All runs
correspond to 16-threaded execution. The points labeled by
no approximation capture how the output accuracy of the
execution (excluding any approximation) varies across 100

1 The synchronization point relaxed resides in line 732 for experiment 1;
741 for 2; 834 for 3; 843 for 4; 1133 for 5; 1135 for 6; 1139 for 7; 1141 for 8;
and 1143 for 9, of pthreads.cpp file, respectively.

2For this and the following analysis, we run the benchmarks 16-threaded,
on a 16-core node comprising 2 eight-core Sandy Bridge E5-2670 processors
of 2.6GHz, 32KB instruction and data L1, 256KB shared L2, 20MB LLC, and
64GB memory. Unless otherwise noted, we deploy as input size a simsmall-
equivalent [1]. We discuss the sensitivity to the input data (size) in Section 2.5.
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Figure 3: % accuracy loss of fluidanimate under approximate
synchronization vs. by excluding any approximation,
measured by Mdistance (Section 3).

repetitions due to the inherent non-determinism of fluidan-
imate. We observe that the outcome under approximation
closely tracks the outcome with any approximation excluded.
The inherent non-determinism in the application renders a
sizable % accuracy loss even if we exclude approximation.
fluidanimate divides the simulated space into a grid of cells.
Each grid cell encompasses a number of particles. Capturing
interactions between the centers of mass of grid cells instead
of individual particles reduces algorithmic complexity. The
non-determinism under no approximation stems from the up-
dates to the border cells: the border cells can be updated by
more than one thread concurrently, since the implementation
does not enforce any deterministic order. Moreover, these up-
dates involve finite-precision floating point arithmetic which
is neither commutative nor associative.
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Figure 4: % accuracy loss of kmeans under approximate syn-
chronization for two different metrics (Section 3).

Case Study 7: Figure 4a captures how the % accuracy loss
in the output of kmeans from Stamp changes under approxi-
mate synchronization. kmeans relies on iterative refinement
in partitioning its input data points into k clusters. Every it-
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eration, the algorithm assigns each input point to the closest
possible cluster (i.e. the cluster of minimum Euclidean dis-
tance to the point). Then follows the update of the cluster
centers to reflect the new assignments. The algorithm termi-
nates once the assignments stabilize. The accuracy metric,
Mcluster−assign, is the ratio of points which were assigned to
a different cluster under approximation, when compared to
the exact outcome. To extract the exact assignments, we run
the benchmark single-threaded and enforce very strict con-
vergence criteria. Experiments 1-3 each corresponds to the
relaxation (i.e. removal) of a different synchronization point of
the application: the three critical sections protect the updates
to the cluster centers; the accesses to the list of points; and
the updates to the variable controlling converge, respectively.
We repeat each experiment 100 times. We observe that the
% accuracy loss spans a wider interval when compared to flu-
idanimate. However, none of these experiments cause invalid
or non-terminating execution, as opposed to fluidanimate.
Case Study 8: We observe a similar trend if we deploy a
different approximation technique than relaxed synchroniza-
tion: Our kmeans implementation relies on iterative refinement
guided by Euclidean distances. This time, we assume that the
calculation of Euclidean distance between points and cluster
centers is mapped to approximate hardware of reduced pre-
cision. Figure 5a captures how the % accuracy loss in the
output changes, if we stick to the same accuracy metric as
in Figure 4a. Each experiment, repeated 100 times, reflects
the execution under a specific precision. The legend shows
the experiments in the direction of monotonically decreas-
ing precision: each value corresponds to the relative error
(in Euclidean distance calculation) incurred due to precision
reduction. We observe that the data points tend to move right
with a wider spread – to render more experiments with higher
loss in output accuracy, as the precision reduces.

(Non)Determinism: In order to tame sources of non-
determinism in characterizing the accuracy of exact execu-
tion, we need to enforce single-threaded runs, and configure
the application to deliver the maximum possible output ac-
curacy for a given input by tightening convergence criteria.
At the same time, we need to ensure statistical significance
under approximation. Different applications and approx-
imation techniques give rise to different spectra for the
execution outcome: no program termination, termination
with invalid outputs, valid outputs spanning a wide accu-
racy interval, or some mixture thereof. Valid outputs shape
the trade-off space of accuracy vs. energy efficiency, but the
existence of invalid executions necessitates safety nets. The
overhead of safety nets should be reflected to the trade-off
space.

2.5. Impact of Input Data

We should also consider different inputs in quantifying the
complex trade-off space of accuracy vs. energy efficiency.
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Figure 5: % accuracy loss of kmeans under precision reduc-
tion for two different metrics (Section 3).
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Figure 6: Impact of input size on % accuracy loss for fluidani-
mate under approximate synchronization, measured
by metric Mcell−distance (Section 3).

The sensitivity of the output accuracy to inputs can vary con-
siderably depending on the approximation technique and the
application domain. Inputs may differ both in size and data
spread, and both can affect computation complexity and an
application’s response to approximation.
Case Study 9 (Sensitivity to Input Size): Figure 6 tabulates
how the % accuracy loss of fluidanimate changes, considering
different input sizes. As we move from simsmall to simlarge,
the number of particles changes from 35K to 300K, and the
median % accuracy loss across 100 experiments changes no-
tably, but not monotonically.
Case Study 10 (Sensitivity to Input Data): Figure 7 tabu-
lates how the % accuracy loss of kmeans changes, considering
different input data values. To capture the sensitivity of output
accuracy to changes in the distribution of input points, we
start with 8K points, with every 1K points having the same
coordinates (rendering 8 distinct clusters)3. We then add uni-
form random noise of varying magnitude to all of these 8K

3In our kmeans implementation, simsmall has 2K; simmedium, 16K; and
simlarge, 64K points.
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Figure 7: Impact of input data on % accuracy loss for kmeans
under precision reduction, measured by metric
Mcluster−assign (Section 3).

coordinates. We quantify the magnitude of noise in three lev-
els; low, medium, and high. We test these inputs under the
highest precision reduction from Figure 4a. We repeat each
experiment 100 times. We observe that the data points shift
to the right as the input noise magnitude increases, leading to
more experiments with higher loss in output accuracy.

Sensitivity to Inputs: The sensitivity of accuracy loss
to both the size and the data spread of inputs may vary
considerably depending on the approximation technique
and the application domain. Accordingly, different inputs
should be considered in quantifying the complex trade-off
space of accuracy vs. energy efficiency.

2.6. Metric Scope

We can deploy accuracy metrics at different scopes. For
example, if multiple kernels constitute the application, an
accuracy metric may apply for each kernel. This type of
analysis is useful in characterizing the sensitivity of differ-
ent phases of computation to noise, in order to facilitate
selective approximation. However, derivation of the ac-
curacy of the entire application from restricted-scope, per
kernel metrics may not always be viable. This is because,
depending on the particular execution trajectory, the im-
pact of the degradation in the output of a kernel may grow,
vanish, or stay the same as we reach the outputs of the
encompassing application.

2.7. Acceptability vs. Accuracy

Accuracy metrics cannot measure “acceptability” of an ex-
ecution outcome, which strongly depends on the context
in which the corresponding application is deployed. Ac-
cordingly, context-oblivious analyses – as it is the case
for most architectural studies – should deliver trade-off
spaces, pareto fronts or ranges rather than randomly sam-
pled points.

3. Metric Space

By exploiting semantic algorithmic information, we can refine
generic accuracy metrics, or devise new ones. For a given
application, many valid accuracy metrics may exist, possibly
of different numeric stability.
Case Study 11: In Figure 1a, we use a distance-based distor-
tion metric to capture accuracy loss. Let us call this metric
Mdistance. The deviation corresponds to the absolute distance
between exact and approximate positions of a particle nor-
malized to the maximum possible distance (dmax) within the
simulated space. Examining the x-axis, we observe that %
accuracy loss captured by Mdistance remains less than 0.1%
across all experiments. The worst-case degradation – 100%
loss in accuracy – corresponds to all particle positions under
approximation becoming distance dmax apart from their exact
positions. This scenario is pretty unlikely in that it confines all
exact and approximate positions to the lower and upper corners
of the simulated space. On the other hand, Mdistance can cap-
ture invalid outputs. Mdistance assigns > 100% accuracy loss
to particles falling outside the simulated space, since the posi-
tion of such particles under approximation may shift further
apart from their exact value than dmax. In order to mitigate
the shortcomings of Mdistance, we can devise an alternative
metric, Mcell , to exploit algorithmic information in the follow-
ing way: fluidanimate divides the simulated space into grids,
where the granularity – the size of each grid cell – represents
an application-specific knob. Each grid cell contains a fixed
number of particles. Capturing interactions between the (cen-
ters of mass of) cells as opposed to individual particles notably
reduces algorithmic complexity. We can record the grid cell
encompassing each particle at the end of exact and approxi-
mate executions. Mcell then reports the number of mismatched
particle-cell assignments between two executions, divided by
the total number of particles in the simulated space. While
semantically valid, Mcell misses how far particles moved away
from their exact position under approximation: There is no
distinction between the accuracy of two outcomes with one
displaced particle only, if the displaced particle moved one
cell-away in the first case, and by many cells-away, in the
second. A new metric, Mcell−distance, can distinguish between
similar cases: This time, we use the distance between the
grid cells encompassing exact and approximate positions for
each displaced particle, divided by the total number of cells.
For the very same experiments conducted to generate the data
in Figure 1a, Figures 1b and 1c capture the corresponding
outcome under Mcell , and Mcell−distance, respectively. Overall,
we observe that all of the three metrics render very similar
differences in the accuracy loss of outputs across different
experiments.
Case Study 12: Figure 4a captures the accuracy loss
of kmeans under relaxed synchronization, deploying
Mcluster−assign, the ratio of points which were assigned to a
different cluster under approximation, when compared to the
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exact outcome. For the very same execution, Figure 4b de-
picts the outcome under the alternative metric, Mcluster−center.
Mcluster−center instead captures the deviation of the cluster cen-
ters from their exact positions under approximation. This
metric is very similar to the Mdistance for fluidanimate. Fig-
ures 5a and Figures 5b tabulate how these two metrics compare
under precision reduction. Both of the metrics are semantically
valid. The preference is likely to be determined by what kind
of problem kmeans is solving. The metrics render notably dif-
ferent (similar) outcomes under approximate synchronization
(precision reduction).

4. Output Randomization for Metric Evaluation
Accuracy loss under approximation, a bare number as calcu-
lated by an application-specific metric, oftentimes cannot give
us a clear picture of how severe the degradation actually is. In
other words, this number alone fails to provide enough insight
into whether the observed accuracy loss is acceptable. To
address this, we introduce an evaluation method for accuracy
loss, output randomization. The idea is, for a given application-
specific metric, (i) to generate a statistically significant number
of completely randomized outputs; (ii) to calculate the accu-
racy loss for each completely randomized output, and (iii)
to compare the accuracy loss under approximation with the
average accuracy loss observed across randomized outputs.
Being totally independent from the inputs, the average accu-
racy loss of randomized outputs is likely to come close to the
worst-case.
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Figure 8: % accuracy loss under output randomization.

Case Study 13: We consider two applications, particlefilter
(from Rodinia) and kmeans. We generate 105 random outputs
per se. particlefilter statistically derives the location of a
target object from noisy measurements of the location. The
output is the position of the object being tracked within the
simulated, 128×128 frame. We generate random numbers for
the x and y coordinates of the location within this simulated
range. As the accuracy metric, we deploy the displacement
of the point with respect to the exact position, divided by the

diagonal length of the simulated frame. The exact position is
at the center of the frame. Figure 8a depicts the distribution
of the calculated % accuracy loss across 105 experiments. We
observe that the % accuracy loss under output randomization
always stays below 50%, as the points of maximum possible
displacement under randomization (with respect to the exact
position) can only be on the corners of the frame, excluding
invalid outputs. The average is 27.1%. Figure 8b reflects
the outcome under output randomization for kmeans. In this
case, we generate random assignments for 65K points to 15
clusters. Contrary to particlefilter, the % accuracy loss under
output randomization becomes 93.3% on average. Let us
assume that we evaluate an approximation technique for both
of these applications, and that the corresponding accuracy
metrics render a % accuracy loss of 15% for both. Based on
our results for output randomization, this 15% is more likely
to correspond to an acceptable outcome for kmeans than for
particlefilter.

Output randomization is an effective technique to reason
about the severity of a given accuracy loss under approxi-
mation, as calculated by an application-specific metric. The
idea is, for a given application-specific metric, to compare
the accuracy loss under approximation with the average
accuracy loss incurred by completely randomized outputs.
Being totally independent from the inputs, randomized out-
puts are likely to incur a close-to-worst-case accuracy loss.

5. Putting It All Together

Based on our discussion in the previous sections, we next
provide practical guidelines for quantitative characterization of
accuracy loss under approximation, to cover metric selection,
the design of experiments, and how to read the outcome of
experiments.

5.1. On Metric Selection

In Table 2 we provide a compilation of (relative) metrics con-
forming to our guidelines from Sections 2 and 3. In accordance
with Table 1, we adopt relative deviation (Section 1) in the
output value for Class I. For Class II, on the other hand, we
suggest two safe alternatives. The first one, relative displace-
ment, reports the average displacement (across all elements)
divided by the span of the simulated space (i.e. the diagonal
length in a two dimensional simulated space). This metric
is safe for applications that generate coordinate-based out-
puts. The second one, Average Noise to Peak Signal, ANPS,
is defined as the average per element deviation normalized to
the peak signal (i.e. maximum value) observed in the exact
output. Both, ANPS and distortion in their basic definition
assume that all elements of the output are of equal critical-
ity. We can extend both metrics to incorporate per element
weights to capture divergence in criticality – provided that
such weights exist – by converting the average (arithmetic
mean) to weighted average. In accordance with Table 1, we
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Class Output Data Type Accuracy Metric Domain Examples

I Numeric: scalar Relative deviation in output value Optimization canneal (Parsec)
Compression dedup (Parsec)

II Numeric: multi-dimensional Relative displacement
n-body simulation fluidanimate (Parsec)

barnes, water (Splash2)

Computer Vision bodytrack (Parsec)
particlefilter (Rodinia)

Avg. Noise to Peak Signal (ANPS) Linear Algebra cholesky, lu (Splash2)
Histogram histo, tpacf (Parboil)

III Compound (vector) Relative mismatch
Clustering streamcluster (Parsec)

kmeans (Stamp)
Data Mining UtilityMine (MineBench)
Similarity search ferret (Parsec)

Relative positional error Sorting radix (Splash2)

IV Multi-media SSIM Computer Vision raytrace (Splash2)
volrend (Splash2)

Video Encoding x264 (Parsec)

Table 2: Compilation of (relative) accuracy metrics conforming to the guidelines from Sections 2 and 3.

adopt relative mismatch, and positional error for Class III.
Relative mismatch is particularly useful if we do not care
about the magnitude of each element, and all that matters is
mismatches between elements under approximate and exact
executions, respectively. Positional error applies to sorting ap-
plications, and quantifies the number of mis-ordered elements
under approximation. Finally, in accordance with Table 1, we
adopt SSIM for Class IV. The compilation in Table 2 provides
only relative metrics. However, it may not be always possible,
and moreover, necessary, to derive relative metrics. Absolute
(i.e. non-normalized) versions of the metrics from Table 2
can as well serve quantification of the accuracy loss under
approximation.

5.2. On the Design of Experiments

As approximation can easily induce non-determinism, we have
to repeat experiments under the very same configuration for
a statistically significant number of times. Only then we can
extract the distribution of the accuracy loss under a given
experimental setup (e.g. in histogram format), to be able to re-
liably compare different approximation scenarios. We should
also capture the tails of such distributions (the extreme val-
ues of accuracy loss) in developing and evaluating techniques
to bound the approximation-induced accuracy loss. In this
context, trying to represent the entire distribution as a single
numeric value (mean or median) is very likely to mask useful
variation information.

The application domains which lend themselves well to
approximation are of probabilistic nature, which incurs in-
herent non-determinism even if we exclude approximation.
Accordingly, we should first characterize this inherent non-
determinism to be able to distinguish approximation-induced
degradation without any ambiguity. Different applications
and approximation techniques render different spectra for the
execution outcome: no program termination, termination with

consistently invalid outputs, valid outputs spanning a wide
accuracy loss interval, or some mixture thereof (Section 2.4).
Valid outputs determine the trade-off space of accuracy vs.
energy efficiency. The presence of non-terminating and in-
valid executions, on the other hand, necessitate safety nets
for approximation to be viable. The energy overhead of such
safety nets evolve with their complexity, and can easily alter
the trade-off space. For example, if we devise re-execution
as the safety net to recover from invalid or non-terminating
executions, we should factor in the overhead of re-execution –
weighed by the expected frequency of occurrence of invalid or
non-terminating executions – in extracting the trade-off space.

5.3. How to Read the Outcome of Experiments?

Even if we deploy relative accuracy metrics (Section 2.2),
we need to be very careful in comparing the accuracy loss
under approximation across different applications. Different
applications use diverse accuracy metrics, which can easily
contaminate comparative analysis. Besides, as demonstrated
in Section 4, the very same % accuracy loss may not translate
into the exact same degree of degradation for different appli-
cations. In other words, while 15% can be highly acceptable
for one application, it can be considered catastrophic for the
other. The same story applies to comparison across differ-
ent inputs. An application’s noise tolerance can considerably
change with different inputs, as shown in Section 2.5. Ergo,
averaging across different inputs is not acceptable. Showing
the efficiency of an approximation technique in bounding the
accuracy loss separately for each application and input is more
meaningful than targeting a single, fixed value of accuracy
loss across different applications and inputs.

6. Conclusion

Approximate computing represents a promising paradigm in
improving the energy efficiency, thus performance, of the
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severely power-limited computing platforms of today. How-
ever, to be able to enable this potential, we need robust means
to characterize the complex trade-off space of energy effi-
ciency vs. accuracy. This article covers pitfalls and fal-
lacies in the development and deployment of application-
specific accuracy metrics which serve the purpose. Accuracy
metrics from Table 2 along with the Output Randomization
tool from Section 4 are publicly available for download at
altai.ece.umn.edu/accurax.
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