Update-Efficiency and Local Repairability
Limits for Capacity Approaching Codes

Arya Mazumdar Member, IEEE, Venkat Chandar, and Gregory W. Wornell Fellow, IEEE

Abstract—Motivated by distributed storage applications, we investigate the degree to which capacity achieving codes can be efficiently updated when a single information symbol changes, and the degree to which such codes can be efficiently repaired when a single encoded symbol is lost.

Specifically, we first develop conditions under which optimum error-correction and update-efficiency are possible. We establish that the number of encoded bits that should change in response to a change in a single information bit must scale logarithmically in the block-length of the code, if we are to achieve any nontrivial rate with vanishing probability of error over the binary erasure or binary symmetric channels. Moreover, we show that there exist capacity-achieving codes with this scaling.

With respect to local repairability, we develop tight upper and lower bounds on the number of remaining encoded bits that are needed to recover a single lost encoded bit. In particular, we show that when the rate of an optimal code is ϵ below capacity, the maximum number of codeword symbols required to recover one lost symbol must scale as $\log 1/\epsilon$.

Several variations on—and extensions of—these results are also developed, including to the problem of rate-distortion coding.

Index Terms—error-correcting codes, linear codes, update-efficiency, locally repairable codes, low-density generator matrix codes, low-density parity check codes, channel capacity

I. INTRODUCTION

There is a growing need to provide reliable distributed data storage infrastructure in highly dynamic and unreliable environments. Storage nodes (servers) can switch between on- and off-line frequently, due to equipment failures, breaks in connectivity, and maintenance activity. Corruptions of the data can also arise. Furthermore, the data itself is often changing frequently, requiring the constant updating of storage nodes.

These characteristics place additional demands on the error-control coding typically considered for such systems, and there are important questions about the degree to which those demands can be accommodated, which the community has begun to investigate in recent years.

In this paper, we focus on two specific such demands, for a scenario in which each symbol of an encoded message is stored at a different node in the network. The first is that the coding be update-efficient or locally updatable, i.e., that small changes in the data require only small changes in its coded representation. The second is that the coding be locally repairable or recovery-efficient, i.e., that small portions of the coded representation that are lost can be recovered from correspondingly small portions of the rest of the encoded symbols. The degree to which these demands can be accommodated affects the bandwidth, energy, and/or other resource consumption characteristics of such infrastructure.

There is considerable flexibility in terms of how to model the notion of “portion” when investigating such questions, and the choice in practice is typically dictated by the application. For example, in the context of update-efficiency one can ask: if a single bit in the message changes, how many bits in aggregate, of the symbols in the associated codeword must change in response? Analogously, in the context of recovery-efficiency, one can ask: if a single symbol in the encoding of a message is lost, how many bits of information, in aggregate, are required from the remaining symbols to specify how to repair the encoding?

Such formulations have received significant attention in the literature. They are appropriate in scenarios, e.g., where the resource cost in the system is proportional to the communication bandwidth between storage nodes. Examples of work in this vein include [1], which develops a class of locally “regenerative codes,” and [2], which shows that it is possible to have “good” codes that are both update-efficient and minimize the repair bandwidth.

As an alternative model, in the context of update-efficiency we can ask how many symbols in the message must change in response to a single-symbol change in the message, in order to update the encoding. In the context of recovery-efficiency, as the counterpart, in response to the loss of a single encoded symbol we can ask how many of the remaining symbols are needed to be able to reconstruct it. This formulation is more natural in a scenario where the dominant resource cost is that of simply establishing a link, regardless of its size, between storage nodes (such as when such nodes take the form of

1Since the symbol alphabet is unconstrained, a symbol could represent a packet or block of bits of arbitrary size.

2It is worth emphasizing that in general neither model is necessarily more restrictive than the other, since in each case we have some flexibility in the choice of symbol alphabet.
servers).

This alternative model, which has attracted much attention in the community, is the focus of the present paper. Moreover, to simplify the exposition, our treatment will largely focus on a special case of this model in which the codeword symbols are, themselves, bits, i.e., binary-valued, in which it of course also corresponds to a special case of the first model.

A. Update-Efficiency

While the broader notion of update-efficiency is implicit in work on array codes—see, e.g., [3], [4]—the first substantial analysis of update-efficiency appears in [5].

When changes in the data are significant, updating a linear (in the blocklength of the code) number of the encoded symbols is unavoidable for any code. However, when the changes are incremental, updating a sublinear number of the symbols can be sufficient. For example, [5] considers codes over a binary alphabet and shows the existence of a linear code that achieves the capacity of the binary erasure channel (BEC) with the property that any single-bit change in the message requires only a logarithmic (in the block-length) number of bits to be updated in the codeword.

In this paper, we begin with a brief discussion of update-efficient codes that can correct arbitrary sets of (adversarial) errors/erasures, since such adversarial models are common in current storage applications. In this case, update-efficiency and error-correctability are directly conflicting objectives. In particular, it is not possible to correct more than (roughly) \(t/2 \) errors (or roughly \(t \) erasures) with a code that needs at most \(t \) bits of update for any single-bit change in the message. This is because the minimum pairwise distance between the codewords (i.e., the minimum distance of the code) is upper bounded by \(t \). We mention properties of linear codes that are useful for constructing good update-efficient adversarial-error-correcting codes, i.e., codes that achieve the best possible tradeoff. Perhaps the most interesting observation for this scenario is that if there exists a linear code with a given rate and minimum distance, then there exists another linear code with the same parameters that is as update-efficient as possible.

The remainder of our development focuses on the random failure model, where much better average performance is possible. We begin with a simple derivation of one of the main propositions of [5], i.e., that there exist linear codes that achieve the capacity of the BEC such that for any single-bit change in the message, only \(O(\log n) \) bits have to be updated in a codeword of length \(n \). However, our main result is the converse statement: we show that if a linear code of positive rate achieves arbitrarily small probability of error over a BEC, then a single-bit change in the message must incur an updating of \(\Omega(\log n) \) bits in the codeword. In addition, we estimate \(\gamma > 0 \) such that there cannot exist a linear code with positive rate and arbitrarily small probability of error that requires fewer than \(\gamma \log n \) bit updates in the codeword per single bit change in the message.

B. Local Repairability

The potential for a code to be locally repairable—which is, in some sense, a notion dual to that of update-efficiency—was first investigated in [6].

For significant losses of codeword symbols, the minimum distance properties of the code naturally characterize the worst-case requirements to repair the encoding. However, the ability to repair smaller losses depends on other properties of the code. Accordingly, [6] investigates code structure allowing any single symbol of any codeword to be recovered from at most a constant number of other symbols of the codeword, i.e., from a number of symbols that does not grow with the length of the code.

From this perspective, in practice one might hope to have codes with both a large minimum distance and structure that enables recovery from the single symbol losses using the fewest possible number of remaining symbols.

To this end, [6], [7] consider locally repairable codes that also correct a prescribed number of adversarial errors (or erasures), and develop a trade-off between the local repairability and error-correctability. In particular, it is shown that for a \(q \)-ary linear code \((q \geq 2) \) of blocklength \(n \), the minimum distance \(d \) satisfies

\[
d \leq n - k - \left\lceil \frac{k}{r} \right\rceil + 2,
\]

where \(k \) is the code dimension and \(r \) is the number of symbols required to reconstruct a single symbol of the code (referred to as the local repairability).

Such results can be generalized to nonlinear codes of any desired alphabet size. Indeed, [8] shows that for any \(q \)-ary code with size \(M \), local repairability \(r \), and minimum distance \(d \), we have

\[
\log M \leq \min_{1 \leq i \leq \left\lceil \frac{r}{d} \right\rceil} \left[tr + \log A_q(n - t(r + 1), d) \right],
\]

where \(A_q(n, d) \) is the maximum size of a \(q \)-ary code of length \(n \) and distance \(d \).

It should be noted that, in contrast to the case of update-efficiency, which requires a number of codewords to be close to each other, there is no immediate reason that a code cannot have both good local repairability and good error-correctability. Perhaps not surprisingly, there has, in turn, been a growing literature exploring locally repairable codes with other additional properties; see, e.g., [9]–[11].

In this paper, we focus on probabilistic channel models that take into account the statistics of node failure, and optimize average performance. To the best of our knowledge the associated capacity results for locally repairable codes have yet to be developed. Indeed, the analysis of local repairability in the existing literature is almost invariably restricted to an adversarial model for node failure. While combinatorially convenient, there is no guarantee the resulting codes are good in an average sense.

In our development, we first show that it is possible to construct codes operating at a rate within \(\epsilon \) of the capacity of the BEC that have both local repairability \(O(\log 1/\epsilon) \) and an update-efficiency scaling logarithmically with the block-length. However, our main result in this part of the paper is a converse result establishing that the scaling \(O(\log 1/\epsilon) \) is optimal for a BEC—specifically, we establish that if the rate of a code that achieves arbitrarily small probability of error over a BEC is \(\epsilon \) below capacity, then the local repairability is \(\Omega(\log 1/\epsilon) \).
C. Channels with Errors

Most of our development focuses on the case of hard node failures that result in data loss. However, in some less common scenarios of distributed storage, node failures are undetected, resulting in data corruption. While the BEC is a natural model for the former, it is the binary symmetric channel (BSC) that is the corresponding model for the latter. Much, but not all, of our development carries over to the case of the BSC.

In particular, our results on the existence of capacity-achieving codes that are both update-efficient and locally repairable also hold for the BSC. Likewise, our converse result for update-efficient linear codes also holds the BSC. However, we have an additional converse result for general codes that applies only to the BSC, and our converse result for local repairability applies only to the BEC (indeed, local repairability perhaps makes little sense for BSC).

D. Source Coding

We note that the notions of update-efficiency and local repairability are also applicable to source coding, i.e., data compression. In the context of lossless source coding, update-efficient codes have been considered before in papers such as [12]; see also [13] and the references therein. However, the lossy source coding version of the update-efficient coding problem does not appear to have been formalized previously.

Some preliminary results regarding the update-efficiency and local repair properties are summarized towards the end of the paper, where we also summarize some open questions in this area.

E. Organization

The organization of the paper is as follows. After Section II establishes the concepts and notation that will be used throughout the paper, Section III describes the worst-case error-correction capability of an update-efficient code. In Section IV we show that there exist linear codes of length \(n \) and rate \(\epsilon \) less than capacity, with update-efficiency logarithmic in blocklength and local repairability \(O(\log 1/\epsilon) \). In Section V, we develop our main impossibility results for capacity-achieving update-efficient codes. In Section VI we turn to the local repairability of capacity-achieving codes, and develop our converse. In Section VII, we describe a generalization of update efficiency beyond single-bit updates, and discuss the existence of good codes for such scenarios. In Section VIII we introduce and comment on update-efficiency and local repairability in the context of the dual problem of lossy source coding. Finally, Section IX contains some concluding remarks on extensions of the results to larger alphabets.

II. CONCEPTS AND NOTATION

First, we use BEC\((p)\) to denote a binary erasure channel with loss probability \(p \), which has capacity \(1 - p \). Analogously, we use BSC\((p)\) to denote a binary symmetric channel with crossover probability \(p \), which has capacity \(1 - h_B(p) \) where \(h_B(p) = -p \log_2(p) - (1 - p) \log_2(1 - p) \) is the binary entropy function.

Next, for our purposes a code \(\mathcal{C} \subseteq \mathbb{F}_2^k \) is a collection of binary \(n \)-vectors. The support of a vector \(x \) (written as \(\text{supp}(x) \)) is the set of coordinates where \(x \) has nonzero values. By the weight of a vector \(x \) we mean the size of its support, which we denote using \(w_t(x) \).

Let \(\mathcal{M} \) be the set of all possible messages. Usually accompanied with the definition of the code, is an injective encoding map \(\phi : \mathcal{M} \rightarrow \mathcal{C} \), which defines how the messages are mapped to codewords. In the following discussion, let us assume \(\mathcal{M} = \mathbb{F}_2^n \). In an update-efficient code, for all \(x \in \mathbb{F}_2^n \), and for all \(e \in \mathbb{F}_2^n \) such that \(w_t(e) \leq u \), we have \(\phi(x + e) = \phi(x) + e' \), for some \(e' \in \mathbb{F}_2^n \) such that \(w_t(e) \leq t \).

A special case of this, captured in the following definition, is of primary interest in this paper.

Definition 1: The update-efficiency of a code \(\mathcal{C} \) and the encoding \(\phi \), is the maximum number of bits that needs to be changed in a codeword when a single bit in the message is changed. A code \(\mathcal{C} = (\mathcal{C}, \phi) \) has update-efficiency \(t \) if for all \(x \in \mathbb{F}_2^n \), and for all \(e \in \mathbb{F}_2^n : w_t(e) = 1 \), we have \(\phi(x + e) = \phi(x) + e' \), for some \(e' \in \mathbb{F}_2^n : w_t(e') \leq t \).

A linear code \(\mathcal{C} \subseteq \mathbb{F}_2^n \) of dimension \(k \) is a \(k \)-dimensional subspace of the vector space \(\mathbb{F}_2^n \). By an \([n, k, d]\) code we mean a linear code with length \(n \), dimension \(k \) and minimum distance between codeword pairs of \(d \). Linear codes are of particular interest given their attractive representation, encoding, and decoding complexity.

For linear codes, the encoding is linear if the mapping \(\phi : \mathbb{F}_2^k \rightarrow \mathcal{C} \) can be expressed in the form \(\phi(x) = x^T G \), for any \(x \in \mathbb{F}_2^k \). The \(k \times n \) matrix \(G \) is called a generator matrix of the code. Also associated with such a code is its parity-check matrix \(H \), a generator matrix of the nullspace of \(\mathcal{C} \), whence \(Hx = 0 \) for all \(x \in \mathcal{C} \).

For a linear encoding, when changing a single bit in the message, the maximum number of bits that need to be changed in the codeword is the maximum over the weights of the rows of the generator matrix, as the following proposition establishes.

Proposition 1: A linear encoding given by a \(k \times n \) generator matrix \(G \) will have update-efficiency \(t \) if and only if \(G \) has maximum row weight \(t \).

Proof: It is easy to see that if the maximum number of ones in any row is bounded above by \(t \), then at most \(t \) bits need to be changed to update one bit change in the message.

On the other hand, if the code has update-efficiency \(t \) then each of the vectors \((1, 0, \ldots, 0), (0, 1, \ldots, 0), \ldots, (0, 0, \ldots, 1) \in \mathbb{F}_2^k \) must produce codeword of weight at most \(t \) under \(\phi \). Therefore, the generator matrix given by \(\phi \) will have row weight at most \(t \).

Hence, to optimize update-efficiency in a linear code, we seek a representation in which the maximum weight of the rows of the generator matrix is low. A linear code with a sparse basis is informally called a low density generator matrix (LDGM) code. Evidently, to test for update-efficiency, we need to be able to identify the sparsest basis for the code.

3Throughout the paper, all logarithms are base-2 unless otherwise indicated.
Turning to local repairability, there are multiple possible formal definitions. We will use what is perhaps the simplest, which insists that for each codeword symbol, there is a set of at most \(r \) codeword positions that need to be queried to recover the given symbol with certainty. The formal definition is as follows.\(^4\)

Definition 2: A code \(\mathcal{C} \subseteq \mathbb{F}_2^n \) has local repairability \(r \), if for any \(1 \leq i \leq n \), there exists a function \(f_i : \mathbb{F}_2^r \to \mathbb{F}_2 \) and indices \(1 \leq i_1, \ldots, i_r \leq n, i_j \neq i, 1 \leq j \leq r \), such that for any \(x = (x_1, \ldots, x_n) \in \mathcal{C}, x_i = f_i(x_{i_1}, \ldots, x_{i_r}). \)

It follows immediately that the local repairability of a code is related to the maximum of the weights of the rows in the parity-check matrix. Specifically, we have the following.

Proposition 2: If the maximum row-weight of a parity-check matrix of a code is \(r \), then the code has local repairability at most \(r \).

From this proposition, it follows that *low density parity-check (LDPC)* codes—i.e., linear codes with a parity check matrix whose rows each have a small (constant) number of nonzero entries—are locally repairable. It turns out that this property is not quite a necessary condition for local repairability. To make this a necessary condition, one needs to consider not just rows of the parity-check matrix, but the entire dual code (of the linear code). In particular, when the recovery functions \(f_i \)'s are linear, a necessary and sufficient condition for local repairability of linear codes is that the dual code contains low-weight codewords whose supports cover any of the \(n \) coordinates.

III. Adversarial Channels

The adversarial error model is ubiquitous in the storage analysis literature. In an adversarial error model, the channel is allowed to introduce up to \(s \) errors (or \(2s \) erasures), and the location of these errors can be chosen by an adversary. It is known that to correct \(s \) errors (\(2s \) erasures), the minimum distance of the code needs to be at least \(2s + 1 \). However, if a code has update-efficiency \(t \), then there must exist two (in fact, many more) codewords that are within distance \(t \) of each other. Hence, small update-efficiency implies poor adversarial error correction capability, and we cannot hope to find good codes if we adopt an adversarial error model. Nevertheless, before moving on to the main results of the paper, as a reference point we make some observations of foundational nature regarding adversarial error models.

In a code with minimum pairwise distance between codewords \(d \), the update-efficiency has to be at least \(d \), because the nearest codeword is at least distance \(d \) away. That is, if the update-efficiency of the code \(\mathcal{C} \) is denoted by \(t(\mathcal{C}) \), then

\[
t(\mathcal{C}) \geq d(\mathcal{C}),
\]

where \(d(\mathcal{C}) \) is the minimum distance of the code. Our main observation is that the above bound is in fact achievable with the best possible parameters of a linear code.

To develop our result, in light of Proposition 1, the following theorem from [14] is useful.

Theorem 3: Any binary linear code of length \(n \), dimension \(k \) and distance \(d \) has a generator matrix consisting of rows of weight \(\leq d + s \), where

\[
s = \left(n - \sum_{j=0}^{k-1} \left\lceil \frac{d}{2^j} \right\rceil \right)
\]

is a nonnegative integer. The fact that \(s \) is a non-negative integer also follows from the well-known Griesmer bound [15], which states that for any linear code with dimension \(k \), distance \(d \), and length \(n \) must satisfy \(n \geq \sum_{j=0}^{k-1} \lceil d/2^j \rceil \).

Corollary 4: For any linear \([n, k, d]\) code \(\mathcal{C} \) with update-efficiency \(t \),

\[
d \leq t \leq d + \left(n - \sum_{j=0}^{k-1} \left\lceil \frac{d}{2^j} \right\rceil \right).
\]

It is clear that for codes achieving the Griesmer bound with equality, the update-efficiency is precisely the minimum distance, i.e., the best possible. There are a number of families of codes that achieve the Griesmer bound. For examples of such families and their characterizations, see [16], [17].

Example: Suppose \(\mathcal{C} \) is a \([n = 2^m - 1, k = 2^m - 1 - m, 3]\) Hamming code. For this code

\[
t(\mathcal{C}) \leq 3 + (n - 3 - 2 - (k - 2)) = n - k = m = \log(n + 1).
\]

One can easily achieve update-complexity \(1 + \log(n + 1) \) for Hamming codes: simply bring any \(k \times n \) generator matrix of Hamming code into systematic form, resulting in the maximum weight of a row being bounded above by \(1 + (n - k) = 1 + \log(n + 1) \). This special case was mentioned in [5]. Reasoned another way, since the generator polynomial of a Hamming code (cyclic code) has degree \(m \), the maximum row-weight of a generator of a Hamming code is at most \(m + 1 = \log(n + 1) + 1 \).

However, we can do even better by explicitly constructing a generator matrix for the Hamming code in the following way. Let us index the columns of the generator matrix by \(1, 2, \ldots, 2^m - 1 \), and use the notation \((i, j, k) \) to denote the vector with exactly three 1’s, located at positions \(i, j, \) and \(k \). Then, the Hamming code has a generator matrix given by the row vectors \((i, 2^j, i + 2^j) \) for \(1 \leq i \leq m - 1, 1 \leq j < 2^i \). This shows that for all \(n \), Hamming codes have update-efficiency only 3.

To prove the above result without explicitly constructing a generator matrix, and to derive some other consequences, the following theorem from [18] is convenient.

Theorem 5: Any \([n, k, d]\) binary linear code can be transformed into a code with the same parameters that has a generator matrix consisting of only weight \(d \) rows. The implication of this theorem is the following: if there exists an \([n, k, d]\) linear code, then there exists an \([n, k, d]\) linear code with update-efficiency \(d \).

The proof of [18] can be expressed as an algorithm that transforms any linear code, given its parameters \([n, k, d]\) and a generator matrix, into an update-efficient linear code (a code with update-efficiency equal to the minimum distance). The
algorithm, in time possibly exponential in \(n \), produces a new
generator matrix with all rows having weight \(d \). It is of interest
to find a polynomial time (approximation) algorithm for the
procedure, that is, a generator matrix with all rows having
weight within \(d(1 + \epsilon) \) for some small \(\epsilon \).

On the other hand, the above theorem says that there exists a
linear \([n = 2^m - 1, k + 2^m - 1 - m, 3] \) code that has
update-efficiency only 3. All codes with these parameters are
equivalent to the Hamming code with the same parameters up
to a permutation of coordinates [19], providing an alternate
proof that Hamming codes have update-efficiency 3.

More generally, analysis of update-efficiency for BCH codes
and other linear codes is of independent interest. In general,
finding a sparse basis for a linear code given its generator
matrix appears to be a hard problem, although the actual
complexity class of the problem merits further investigation.
Recently, a sparse basis is presented for 2-error-correcting
BCH codes in [20].

We emphasize that the previous remarks, although of the-
oretical interest, are fairly strong negative results suggesting
that update efficiency and error correction are fundamentally
incompatible requirements. Although this is the case for
adversarial models, if we allow randomization so that the code
can be chosen in a manner unknown to the adversary, then it
is possible to fool the adversary. In fact, with a randomized
code it is possible to correct roughly \(pn \) adversarial errors
with a code rate close to the capacity of \(\text{BSC}(p) \) using ideas
put forward in [21]. The randomized code can be chosen to
simultaneously have good update efficiency, as shown in the
case of erasure channels by [5].

In the rest of the paper, instead of choosing a code at random
to fool an adversary, we consider the classical information
theoretic scenario of a random, rather than an adversarial,
channel, although we note that our results easily extend to
the case of using randomization to defeat an adversary.

IV. EXISTENCE OF GOOD CODES

In this section, we show, in a rather simple way, that there
exist linear codes of length \(n \) that

1) have rate \(\epsilon \) less than capacity, \(\epsilon > 0 \),
2) achieve arbitrarily small probability of error,
3) have update-efficiency \(O(\log n) \) and
4) have local repairability \(O(\log 1/\epsilon) \).

It is relatively easy to construct a code with local repairabil-
ity \(O(\log 1/\epsilon) \) that achieves capacity over the \(\text{BSC} \) or \(\text{BEC} \)
with an \(\epsilon \) gap. One can in principle choose the rows of the
parity-check matrix randomly from all low weight vectors, and
argue that this random ensemble contains many codes that
achieve the capacity of the binary symmetric channel (BSC)
up to an additive term \(\epsilon \). Indeed, LDPC codes achieve the
capacity of the binary symmetric channel [22].

Similarly, one may try to construct a low row-weight
generator matrix randomly to show that the ensemble average
performance achieves capacity. In this direction, some steps
have been taken in [23]. However, these constructions fail
to achieve local repairability and update-efficiency simulta-
aneously. Also, in [24], parallel to a part of our work [25],
a rateless code construction was proposed that achieves both

\(O(\log k) \) update-efficiency and local repairability, \(k \) being the
dimension of the code. Below, we describe one simple and
intuitive construction that simultaneously achieves \(O(\log k) \)
update efficiency and \(O(\log 1/\epsilon) \) local repairability, where \(\epsilon \)
is the gap to capacity.

It is known that for every \(\epsilon > 0 \) and any sufficiently
large \(m \), there exists a linear code of length \(m \) and rate
\(1 - h_B(p) - \epsilon \) that has probability of incorrect decoding at
most \(2^{-E(p,\epsilon)m} \). There are numerous evaluations of this result
and estimates of \(E(p,\epsilon) > 0 \). We refer the reader to [26] as
an example. Below, \(m, n, mR, nR, n/m \) are assumed to be
integers. Floor and ceiling functions should be used where
appropriate. However, we avoid using them to maintain clarity
in the argument, unless the meaning is not obvious from the
context.

Let \(m = (1 + \alpha)/E(p,\epsilon) \log n \), with \(\epsilon, \alpha > 0 \). We know
that for sufficiently large \(m \), there exists a linear code \(\hat{C} \) given
by the \(mR \times m \) generator matrix \(\hat{G} \) with rate \(R = 1 - h_B(\hat{p}) - \epsilon \)
that has probability of incorrect decoding at most \(2^{-E(p,\epsilon)m} \).

Let \(G \) be the \(nR \times n \) matrix that is the Kronecker product
of \(\hat{G} \) and the \(n/m \times n/m \) identity matrix \(I_{n/m} \), i.e.,

\[G = I_{n/m} \otimes \hat{G}. \]

Clearly a codeword of the code \(\hat{C} \) given by \(G \) is given by
\(n/m \) codewords of the code \(\hat{C} \) concatenated side-by-side. The
probability of error of \(\hat{C} \) is therefore, by the union bound, at
most

\[\frac{n2^{-E(p,\epsilon)m}}{m} = \frac{nE(p,\epsilon)}{(1 + \alpha)n^{\alpha}\log n} \leq E(p,\epsilon). \]

However, notice that the generator matrix has row weight
bounded above by \(m = (1 + \alpha)/E(p,\epsilon) \log n \). Hence, we
have constructed a code with update-efficiency \((1 + \alpha)/E(p,\epsilon) \log n \), and rate \(1 - h_B(p) - \epsilon \) that achieves a
probability of error less than \(E(p,\epsilon)/[(1 + \alpha)n^{\alpha}\log n] \) over a
\(\text{BSC}(p) \).

We modify the above construction slightly to produce codes
that also possess good local repairability. It is known that
LDPC codes achieve a positive error-exponent. That is, for
every \(\epsilon > 0 \) and any sufficiently large \(m \), there exist an LDPC
code of length \(m \) and rate \(1 - h_B(p) - \epsilon \) that has check
degree (number of 1’s in a row of the parity-check matrix)
at most \(O(\log 1/\epsilon) \), and probability of incorrect decoding at
most \(2^{−E_L(p,\epsilon)m} \), for some \(E_L(p,\epsilon) > 0 \). This code will
be chosen as \(\hat{C} \) in the above construction, and \(G \) can be any
generator matrix for \(\hat{C} \).

The construction now follows without further modifications.
We have, \(m = (1 + \alpha)/E_L(p,\epsilon) \log n \), an integer, \(\epsilon, \alpha > 0 \),
and \(G = I_{n/m} \otimes \hat{G} \). This generator matrix has row weight
bounded above by \(m = (1 + \alpha)/E_L(p,\epsilon) \log n \), so the code
has update-efficiency \((1 + \alpha)/E_L(p,\epsilon) \log n \), rate \(1 - h_B(p) - \epsilon \),
and achieves probability of error less than \(E_L(p,\epsilon)/[(1 + \alpha)n^{\alpha}\log n] \) over a \(\text{BSC}(p) \).

With respect to repairability, the parity-check matrix \(H \) of
the resulting code will be block-diagonal, with each block

\[\text{(There are several works, such as [22], [27], that discuss this result. For}
\text{example, we refer the reader to [27, Thm. 7 and Eq. (17)] for a derivation}
\text{of the fact.)} \]
being the parity-check matrix of the code \hat{C}. The parity-check matrix of the overall code has row-weight $O(\log 1/\epsilon)$. Hence, any codeword symbol can be recovered from at most $O(\log 1/\epsilon)$ other symbols by solving one linear equation. Therefore, we have the following result.

Theorem 6: There exists a family of linear codes C_n of length n and rate $1 - h_B(p) - \epsilon$, that have probability of error over BSC(p) going to 0 as $n \to \infty$. These codes simultaneously achieve update-efficiency $O(\log n/E_L(p,\epsilon))$ and local repairability $O(\log 1/\epsilon)$.

Hence, it is possible to simultaneously achieve local repairability and update-efficiency with a capacity-achieving code on BSC(p). Note, however, that this comes with a price. Namely, the decay of probability of error with the blocklength is only polynomial, not exponential. A similar result is immediate for BEC(p).

V. IMPOSSIBILITY RESULTS FOR UPDATE-EFFICIENCY

In this section, we show that for suitably small γ, no code can simultaneously achieve capacity and have update-efficiency better than $\gamma \log n$, where n denotes the blocklength. More precisely, we give the following converse results.

1) **Linear codes.** Linear codes of positive rate cannot have arbitrarily small probability of error and update-efficiency better than $\gamma_1(p) \log n$, $\gamma_1(p) > 0$ when used over the BEC (Thm. 7). Since a BSC is degraded with respect to a BEC, this result implies same claim for BSC as well. To see that BSC(p) is a degraded version of a BEC with erasure probability $2p$, one can just concatenate BEC($2p$) with a channel with ternary input $\{0, 1, 2\}$ and binary output $\{0, 1\}$, such that with probability 1 the inputs $\{0, 1\}$ remain the same, and with uniform probability ? goes to $\{0, 1\}$.

2) **General codes.** Any (possibly non-linear) code with positive rate cannot have update-efficiency better than $\gamma_2(p) \log n$, $\gamma_2(p) > 0$, and vanishing probability of error when transmitted over BSC. The value of $\gamma_2(p)$ that we obtain in this case is larger than $\gamma_1(p)$ of linear codes; moreover this result applies to more general codes than the previous (Thm. 8), but we have not been able to extend it to the BEC. It could be interesting to explore whether nonlinear codes of positive rate must have at least logarithmic update efficiency for the BEC.

3) **LDGM ensemble.** We also show that for the ensemble of LDGM codes with fixed row-weight $\gamma_3(p) \log n$, $\gamma_3(p) > 0$, almost all codes have probability of error approaching 1 when transmitted over a BSC (Thm. 10). The value of $\gamma_3(p)$ in this case is much larger than the previous two cases.

A plot providing the lower bound on update-efficiency of “good” codes is presented in Fig. 1. In this figure, the values of α, the constant multiplier of $\ln n$, as a function of BSC flip probability p is plotted. The plot contains results of Theorems 7, 8 and 10. Note that $\gamma_1(p), \gamma_3(p) \to \infty$ as $p \to 1/2$ for general codes (Theorem 8) and the LDGM ensemble (Theorem 10).

Fig. 1. The plot of constant factors of $\ln n$ from Theorems 7, 8 and 10. The fact that the bound for linear codes appears below the bound for general codes is a artifact of the bounding technique: the bound for general codes is not extendable to the BEC, but the bound for linear codes is.

A. Impossibility result for linear codes

The converse result for linear codes used over a binary erasure channel is based on the observation that when the update-efficiency is low, the generator matrix G is very sparse, i.e., every row of G has very few non-zero entries. Let the random subset $I \subseteq \{1, \ldots, n\}$ denote the coordinates not erased by the binary erasure channel. Let G_I denote the submatrix of G induced by the unerased received symbols, i.e., the columns of G corresponding to I. Then, because G is sparse, it is quite likely that G_I has several all zero rows, and the presence of such rows implies a large error probability. We formalize the argument below.

Theorem 7: Consider using some linear code of length n, dimension k and update-efficiency t, specified by generator matrix G over BEC(p). Hence, all rows of G have weight at most t. Assume that for some $\epsilon > 0$,

$$t < \frac{\ln \frac{k^2}{2n \ln (1/\epsilon)}}{2 \ln \frac{k}{p}}.$$

Then, the average probability of error is at least $1/2 - \epsilon$.

Proof: For linear codes over the binary erasure channel, analyzing the probability of error essentially reduces to analyzing the probability that the matrix G_I induced by the unerased columns of G has rank k (note that the rank is computed over \mathbb{F}_2). To show that the rank is likely to be less than k for sufficiently small t, let us first compute the expected number of all zero rows of G_I. Since every row of G has weight at most t, the expected number of all zero rows of G_I is at least kp^t. The rank of G_I, rank(G_I), is at most k minus the number of all zero rows, so the expected rank of G_I is at most $k - kp^t$.

Now, observe that the rank is a 1-Lipschitz functional of the independent random variables denoting the erasures introduced by the channel. Therefore, by Azuma’s inequality
[28, Theorem 7.4.2], the rank of G_t satisfies
\[
\Pr(\text{rank}(G_t) \geq \mathbb{E}\text{rank}(G_t) + \lambda) < e^{-\frac{\lambda^2}{2n}}.
\]
Therefore,
\[
\Pr(\text{rank}(G_t) \geq k - kp^t + \lambda) < e^{-\frac{\lambda^2}{2n}}.
\]
In particular, substituting $\lambda = kp^t$,
\[
\Pr(\text{rank}(G_t) = k) < e^{-\frac{k^2p^{2t}}{2n}}.
\]
Assuming the value given for t, we see that
\[
\Pr(\text{rank}(G_t) = k) < \epsilon.
\]
Since even the maximum likelihood decoder makes an error with probability at least 0.5 when $\text{rank}(G_t) < k$, this shows that when
\[
t < \frac{\ln \frac{k^2}{2n \ln(1/\epsilon)}}{2 \ln \frac{1}{p}},
\]
the probability of error is at least $1/2 - \epsilon$. (In fact, the average error probability converges to 1. The above argument can easily be extended to show that the probability of decoding successfully is at most $e^{-\Omega(k^6/\log k)}$ for some $\delta > 0$, but we omit the details.)

B. Impossibility for general codes

Now, we prove that even nonlinear codes cannot have low update-efficiency for the binary symmetric channel. The argument is based on a simple observation. If a code has dimension k and update-efficiency t, then any given codeword has k neighboring codewords within distance t, corresponding to the k possible single-bit changes to the information bits. If t is sufficiently small, it is not possible to pack $k+1$ codewords into a Hamming ball of radius t and maintain a low probability of error.

Theorem 8: Consider using some (possibly non-linear) code of length n, size 2^k, $k \in \mathbb{R}_+$, and update-efficiency t over BSC(p). Assume that $t \leq \frac{(1 - \alpha) \log k}{\log((1 - p)/p)}$, for some $\alpha > 0$. Then, the average probability of error is at least $1 - o(1)$, where $o(1)$ denotes a quantity that goes to zero as $k \to \infty$.

Proof: First, we show that a code consisting of $k+1$ codewords contained in a Hamming ball of radius t has large probability of error. Instead of analyzing BSC(p), consider the closely related channel where exactly w uniformly random errors are introduced, where $w + t \leq n/2$. For this channel, subject to the constraint that the $k+1$ codewords are contained in a Hamming ball of radius t, the average probability of error is at least
\[
1 - \frac{(2t + 1)\binom{n}{w+t}}{(k+1)\binom{n}{w}} \geq 1 - \frac{2t(n - w)^t}{kwn^t}.
\]
To see this, take x_1, \ldots, x_{k+1} to be the codewords, and $B_i, i = 1, \ldots, k+1$, to be the corresponding decoding regions. Without loss of generality, we can assume that 1) the ML decoder is deterministic, so the B_i’s are all disjoint, and 2) the codewords are all contained in a Hamming ball centered at the zero vector. Now, let D_i be the set of possible outputs of the channel for input $x_i, i = 1, \ldots, k+1$. The average probability of correct decoding is
\[
\frac{1}{k+1} \sum_{i=1}^{k+1} |B_i \cap D_i| \leq \frac{1}{k+1} \frac{|\bigcup_j (B_i \cap D_j)|}{\binom{n}{w}} \leq \frac{|\bigcup_i D_i|}{\binom{n}{w}}.
\]
But
\[
|\bigcup_i D_i| \leq \sum_{j=1}^{t} \binom{n}{w+j} \leq (2t + 1)\binom{n}{w}.
\]
The first inequality follows because an erroneous vector can have weight at least $w - t$ and at most $w + t$. The second inequality follows because $\binom{n}{w}$ increases with $i \leq n/2$.

Now, with probability at least $1 - o(1)$, the number of errors introduced by the the binary symmetric channel is at least $pn - n^{2/3}$ and at most $pn + n^{2/3}$, and conditioned on the exact number of errors, the error vector is uniformly distributed over all strings with this number of errors6.

If $t \leq (1 - \alpha) \log k/\log((1 - p)/p)$, then for $p < \frac{1}{2}$, $pn + n^{2/3} + t < n/2$, for every sufficiently large n. Therefore, the probability of error on the binary symmetric channel is at least
\[
1 - \frac{2t(1 - p)^t}{kp^t} + o(1) = 1 - 2t/k^2 + o(1).
\]

Now, for each message x of the given (n,k) code with update-efficiency t, consider the subcode C_x consisting of the $k+1$ codewords $\phi(x), \phi(x + e_1), \ldots, \phi(x + e_k)$, corresponding to the encodings of x and the k messages obtained by changing a single bit of x. These codewords lie within a Hamming ball of radius t centered around $\phi(x)$. The above argument shows that even a maximum likelihood decoder has a large average probability of error for decoding the subcode C_x. Let us call this probability P_{C_x}. We claim that the average probability of error of the code C with maximum likelihood decoding, P_C, is at least the average, over all C, of the probability of error for the code C_x, up to some factor. In particular,
\[
P_C \geq \frac{1}{n} \sum_{x \in C} P_{C_x}.
\]

We will now prove this claim and thus the theorem. Note that $P_C = 1/|C| \sum_{x \in C} P_x$, where P_x is the probability of error if codeword x is transmitted. Therefore,
\[
P_{C_x} = \frac{1}{|C_x|} \sum_{y \in C_x} P_y.
\]
We have,
\[
\frac{1}{|C|} \sum_{x \in C} P_{C_x} \leq \frac{1}{|C|} \sum_{x \in C} \frac{1}{|C_x|} \sum_{y \in C_x} P_y = \frac{1}{(k+1)|C|} \sum_{x \in C} \sum_{y \in C_x} P_y = \frac{1}{|C|} \sum_{x \in C} \frac{d_x}{k+1} P_x,
\]

6This, of course, follows from standard large deviation inequalities such as Chernoff bound; see, e.g., [29, Thm. 3.1.2].
where \(d_x = |\{ y : x \in C y \}| \leq n \). Hence,

\[
\frac{1}{|C|} \sum_{x \in C} P_{e_x} \leq \frac{1}{|C|} \sum_{x \in C} \frac{n}{k + 1} P_x = \frac{n}{k + 1} P_C.
\]

We conclude that the original code \(C \) has probability of error at least \(1 - o(1) \) when

\[
t \leq \frac{(1 - \alpha) \log k}{\log(\frac{1 - p}{p})}.
\]

\[\square\]

Remark 1: This argument does not work for the binary erasure channel. In fact, there exist zero rate codes for the binary erasure channel with vanishing error probability and sub-logarithmic update-efficiency. Specifically, consider an erasure channel. In fact, there exist zero rate codes for the

\[\text{Corollary 11: For at least } 1 - o(1) \text{ proportion of all linear codes with fixed } t \text{-row-weight generator matrix, } t < (\alpha/\lambda_p) \log n, \alpha < \frac{1}{2}, \text{ and dimension } k > n^a, \text{ the probability of error is } 1 - o(1) \text{ over a BSC}(p), \text{ for } 0 < p \leq 1 \text{.}
\]

In particular, this shows that almost all linear codes with fixed row weight \(t < 1/(2\lambda_p) \log n \) and rate greater than \(1/\sqrt{n} \) are bad (result in high probability of error).

Proof of Corollary 11: From Lemma 9, it is clear that a \(1 - o(1) \) proportion of all codes in \(\Gamma_{n,k,t} \) have rank \(k \). Hence, if a \(1 - o(1) \) proportion of codes in \(\Gamma_{n,k,t} \) have some property, a \(1 - o(1) \) proportion of codes with \(t \)-row-weight generator matrix and dimension \(k \) also have that property.

Now, plugging in the value of \(t \) in the expression for probability of error in Theorem 10, we obtain the corollary.

To prove Theorem 10, we will need the following series of lemmas.

Lemma 12: Let \(x \in \{0,1\}^n \) be a vector of weight \(t \). Let the all-zero vector of length \(n \) be transmitted over a BSC with flip probability \(p < 1/2 \). If the received vector is \(y \), then

\[
\Pr(\text{wt}(y) > d_H(x,y)) \geq \frac{1}{\sqrt{t}} 2^{-\lambda_p t},
\]

where \(\lambda_p = -1 - 1/2 \log p - 1/2 \log(1 - p) > 0 \).

Proof: Let \(I \subset [n] \) be the support of \(x \). We have \(|I| = t \). Now, \(\Pr(\text{wt}(y) > d_H(x,y)) \) whenever the number of errors introduced by the BSC in the coordinates \(I \) is \(t/2 \). Hence,

\[
\Pr(\text{wt}(y) > d_H(x,y)) = \sum_{i \leq t/2} \binom{t}{i} p^i (1 - p)^{t-i} > \left(\binom{t}{t/2} p^{t/2} (1 - p)^{t-t/2} \right) \geq \frac{1}{\sqrt{t}} 2^{-\lambda_p t}.
\]

Lemma 13: Suppose two random vectors \(x,y \in \{0,1\}^n \) are chosen independently and uniformly from the set of all length-\(n \) binary vectors of weight \(t \). Then,

\[
\Pr(\text{supp}(x) \cap \text{supp}(y) = \emptyset) > 1 - \frac{t^2}{n-t+1}.
\]

Proof: The probability in question equals

\[
\frac{\binom{n-t}{t}}{\binom{n}{t}} = \frac{(n-t)!}{(n-2t)!t!} n = \frac{(n-t)(n-t-1)(n-t-2)\ldots(n-2t+1)}{n(n-1)(n-2)\ldots(n-t+1)} = \left(1 - \frac{t}{n} \right) \left(1 - \frac{t}{n-1} \right) \ldots \left(1 - \frac{t}{n-t+1} \right) \geq 1 - \frac{t^2}{n-t+1}.
\]
In the last step we have truncated the series expansion of
\((1 - \frac{t}{n-t+1})^t\) after the first two terms. The inequality will be justified if the terms of the series are decreasing in absolute value. Let us verify that to conclude the proof. In the following
\[X_{t+1} = \frac{\binom{t+i}{i} \cdot n}{n-t+1} = \frac{t-i}{t+1} \cdot \frac{n}{n-t+1} \leq 1, \]
for all \(i \leq t - 1\).

Lemma 14: Let us choose any \(n^a, 0 < \alpha < 1/2\), random vectors of weight \(t\) uniformly and independently from the set of weight-\(t\) vectors. Denote the vectors by \(x_i, 1 \leq i \leq n^a\).

Then,
\[\Pr(\forall i \neq j, \text{supp}(x_j) \cap \text{supp}(x_i) = \emptyset) \geq 1 - \frac{t^2 n^{2a}}{n-t}. \]
This implies all of the vectors have disjoint supports with probability at least \(1 - t^2 n^{2a}/(n-t)\).

Proof: Form Lemma 13, for any pair of randomly and uniformly chosen vectors, the probability that they have overlapping support is at most \(t^2/(n-t)\). The claim follows by taking a union bound over all \(\binom{n}{2}\) pairs of the randomly chosen vectors.

Now, we are ready to prove Theorem 10.

Proof of Theorem 10: We begin by choosing a matrix \(G\) uniformly at random from \(\Gamma_{n,k,t}\). This is equivalent of choosing each row of \(G\) uniformly and independently from the set of all \(n\)-length \(k\)-weight binary vectors. Now, \(k > n^a\), hence there exists \(n^a\) vectors among the rows of \(G\) such that any two of them have disjoint support with probability at least \(1 - t^2 n^{2a}/(n-t)\) (from Lemma 14). Hence, for at least a proportion \(1 - t^2 n^{2a}/(n-t)\) of matrices of \(\Gamma_{n,k,t}\), there are \(n^a\) rows with disjoint supports. Suppose \(G\) is one such matrix. It remains to show that the code \(C\) defined by \(G\) has probability of error at least \(n^{a} 2^{-\lambda_p t}/\sqrt{n}\) over BSC(\(p\)).

Suppose, without loss of generality, that the all zero vector is transmitted over a BSC(\(p\)), and \(y\) is the vector received. We know that there exists at least \(n^a\) codewords of weight \(t\) such that all of them have disjoint support. Let \(x_i, 1 \leq i \leq n^a\), be those codewords. Then, the probability that the maximum likelihood decoder incorrectly decodes \(y\) to \(x_i\) is
\[\Pr(\text{wt}(y) > d_H(x_i, y)) \geq \frac{1}{\sqrt{t}} 2^{-\lambda_p t} \]
from Lemma 12. As the codewords \(x_1, \ldots, x_{n^a}\) have disjoint supports, the probability that the maximum likelihood decoder incorrectly decodes to any one of them is at least
\[1 - \left(1 - \frac{1}{\sqrt{t}} 2^{-\lambda_p t}\right)^{n^a} \geq 1 - e^{-\frac{\alpha}{\sqrt{n}}} 2^{-\lambda_p t}. \]

Remark 2: Theorem 10 is also true for the random ensemble of matrices where the entries are independently chosen from \(\mathbb{F}_2\) with \(\Pr(1) = t/n\).

VI. IMPOSSIBILITY RESULT FOR LOCAL REPAIRABILITY

In this section, we develop the converse for local repairability over the BEC. We show that any code with a given local repairability must have rate bounded away from capacity to provide arbitrarily small probability of error, when used over the BEC. In particular, for any code, including nonlinear codes, recovery complexity at a gap of \(\epsilon\) to capacity on the BEC must be at least \(\Omega(\log 1/\epsilon)\), proving that the above LDPC construction is simultaneously optimal to within constant factors for both update-efficiency and local repairability.

The intuition for the converse is that if a code has low local repairability complexity, then codeword positions can be predicted by looking at a few codeword symbols. As we will see, this implies that the code rate must be bounded away from capacity, or the probability of error approaches 1. In a little more detail, for an erasure channel, the average error probability is related to how the codewords behave under projection onto the unerased received symbols. Generally, different codewords may result in the same string under projection, and without loss of generality, the ML decoder can be assumed to choose a codeword from the set of codewords matching the received channel output in the projected coordinates uniformly at random. Thus, given a particular erasure pattern induced by the channel, the average probability of decoding success for the ML decoder is simply the number of different codeword projections, divided by \(2^{Rn}\), the size of the codebook. We now show that the number of different projections is likely to be far less than \(2^{Rn}\).

Theorem 15:

Let \(\mathcal{C}\) be a code of length \(n\) and rate \(1 - p - \epsilon\), \(\epsilon > 0\), that achieves probability of error bounded away from 1, when used over BEC(\(p\)). Then, the local repairability of \(\mathcal{C}\) is at least \(c \log 1/\epsilon\), for some constant \(c > 0\) and \(n\) sufficiently large.

Proof: Let \(\mathcal{C}\) be a code of length \(n\) and size \(2^{nR}\) that has local recoverability \(r\). Let \(T\) be the set of coordinates with the property that the query positions required to recover these coordinates appear before them. To show that such an ordering exists with \(|T| \geq n/(r+1)\), we can randomly and uniformly permute the coordinates of \(\mathcal{C}\). The expected number of such coordinates is then \(n/(r+1)\), hence some ordering exists with \(|T| \geq n/(r+1)\).

Assume \(\bar{T} \subseteq \{1, \ldots, n\}\) is the set of coordinates erased by the BEC, and let \(\bar{T} = \{1, \ldots, n\} \setminus T\). Let \(x \in \mathcal{C}\) be a randomly and uniformly chosen codeword. \(x_I\) and \(x_{\bar{T}}\) denote the projection of \(x\) on the respective coordinates. We are interested in the logarithm of the number of different codeword projections onto \(\bar{T}\), which we denote by \(\log S(x_{\bar{T}})\). Note that this is a random-variable with respect to the random choice of \(\bar{T}\) by the BEC.

Suppose that the number of elements of \(T\) that have all \(r\) of their recovery positions un-erased is \(u\). Then, the number of different codeword projections is unchanged if we remove these \(u\) elements from \(T\). Hence,
\[\log S(x_{\bar{T}}) \leq |\bar{T}| - u. \]
But \(\mathbb{E}u \geq (1-p)^r |T|\). Therefore,
\[\mathbb{E} \log S(x_{\bar{T}}) \leq n(1-p) - (1-p)^r \frac{n}{r+1}. \]

Observe that \(\log S(x_{\bar{T}})\) is a 1-Lipschitz functional of independent random variables (erasures introduced by the channel). This is because projecting onto one more position cannot decrease the number of different codeword projections, and at
most doubles the number of projections. Therefore, we can use Azuma’s inequality to conclude that
\[
\Pr \left(\log S(x_I) > n(1 - p) - (1 - p)r \cdot \frac{n}{r + 1} + \epsilon n \right) \leq e^{-\epsilon^2 n / 2}.
\]
If we have,
\[
r \leq \frac{\log 1 - \frac{\epsilon}{2}}{\log \frac{1}{1 - p}},
\]
then,
\[
\frac{(1 - p)^r}{1 + r} \geq \left(1 - \frac{p}{2} \right)^r \geq 3\epsilon.
\]
But this implies,
\[
\Pr \left(\log S(x_I) > n(1 - p - 2\epsilon) \right) \leq e^{-\epsilon^2 n / 2}.
\]
This means that for a suitable constant \(c\), if \(r \leq c\log 1 / \epsilon\), then with very high probability \(\log S(x_I) \leq n(1 - p - 2\epsilon)\). However, there are \(2^{hn} = 2^{n(1 - p - \epsilon)}\) codewords, so we conclude that the probability of successful decoding is at most
\[
2^{-\epsilon n} + e^{-\epsilon^2 n / 2}.
\]
Thus, we have proved that if \(r \leq c\log 1 / \epsilon\), the probability of error converges to 1, and in particular, is larger than any \(\alpha < 1\), for sufficiently large \(n\).

Remark 3: Rather than considering the number of different codeword projections, we could have considered the entropy of the distribution of codeword projections onto \(I\), which is also a 1-Lipschitz functional. This is a more general approach that can be extended to the case where local repairability can be adaptive and randomized, and only has to succeed with a certain probability (larger than .5), as opposed to providing guaranteed recovery. However, one obtains a bound of \(n(1 - p - 2\epsilon)\) on the entropy, so Fano’s inequality only shows that the probability of error must be \(\Omega(\epsilon)\), while the above analysis shows that the probability of error must be close to 1.

VII. General update-efficient codes

In this section, to develop further insights into the update-efficiency of codes, we return to the more general definition of update-efficiency that we mentioned in the introduction. Specifically, we have the following.

Definition 3: A code is called \((u, t, \phi)\)-update-efficient if, for any \(u\) bit changes in the message, the codeword changes by at most \(t\) bits. In other words, the code \((C, \phi)\) is \((u, t, \phi)\)-update-efficient if for all \(x \in F_2^n\) and for all \(e \in F_2^n\) : \(wt(e) \leq u\), we have \(\phi(x + e) = \phi(x) + e'\), for some \(e' \in F_2^n\) : \(wt(e') \leq t\).

Obviously, an \((1, t, \phi)\)-update-efficient code is a code with update-efficiency \(t\). As discussed earlier, any \((u, t, \phi)\)-update-efficient code must satisfy \(t > d\), the minimum distance of the code. In fact, we can make a stronger statement.

Proposition 16: Suppose a \((u, t, \phi)\)-update-efficient code of length \(n\), dimension \(k\), and minimum distance \(d\) exists. Then,
\[
\sum_{i=0}^u \binom{k}{i} \leq B(n, d, t),
\]
where \(B(n, d, w)\) is the size of the largest code with distance \(d\) such that each codeword has weight at most \(w\).

Proof: Suppose \(C\) is an update-efficient code, where \(x \in F_2^n\) is mapped to \(y \in F_2^n\). The \(\sum_{i=0}^u \binom{k}{i}\) different message vectors within distance \(u\) from \(x\) should map to codewords within distance \(t\) from \(y\). Suppose these codewords are \(y_1, y_2, \ldots\). Consider the vectors \(y - y, y_1 - y, y_2 - y, \ldots\). These must be at least distance \(d\) apart from one another and all of their weights are at most \(t\). This proves the claim.

There are a number of useful upper bounds on the maximum size of constant weight codes (i.e., when the codewords have a constant weight \(t\)) that can be used to upper bound \(B(n, d, t)\), perhaps the most well-known bound is the Johnson bound [31]. An easy extension of this bound says \(B(n, d, t) \leq \frac{dn}{(dn - 2tn + 2t^2)}\), as long as the denominator is positive. However, this bound is not very interesting in our case, where we have \(n \gg t \geq d\). The implications of some other bounds on \(B(n, d, t)\) on the parameters of update-efficiency is a topic of independent interest.

Note that any code with update-efficiency \(t\) is a \((u, ut)\)-update-efficient code. Hence, from Section IV, we can construct an \((u, O(u \log n))\) update-efficient code that achieves the capacity of a BSC(\(p\)). On the other hand one expects a converse result of the form
\[
\sum_{i=0}^u \binom{k}{i} \leq K(n, t, p),
\]
where \(K(n, t, p)\) is the maximum size of a code with codewords having weight bounded by \(t\) that achieves arbitrarily small probability of error. Indeed, just by emulating the proof of Theorem 8, we obtain the following result.

Theorem 17: Consider using some (possibly non-linear) \((u, t)\)-update-efficient code of length \(n\), and dimension (possibly fractional) \(k\) over BSC(\(p\)). Assume that
\[
t \leq \frac{(1 - \alpha) \log \sum_{i=0}^u \binom{k}{i}}{\log(1 - \alpha) / p},
\]
for any \(\alpha > 0\). Then, the average probability of error is at least \(1 - o(1)\), where \(o(1)\) denotes a quantity that goes to zero as \(k \to \infty\).

This shows that the \((u, O(u \log n))\) update-efficient code constructed by the method of Section IV, is almost optimal for \(u \ll n\).

Remark 4 (Bit error rate and error reduction codes): Suppose we change our model of update-efficient code in the following way (limited to only this remark). The encoding map \(\phi: F_2^n \to F_2^k\) and the decoding map \(\theta : F_2^k \to F_2^n\) must satisfy the property that for a random error vector \(e\) induced by the BSC(\(p\)) and any \(x \in F_2^n\), \(d_S(\theta(\phi(x) + e), x) \sim o(k)\) with high probability. This can be thought of as an error-reducing code, or a code with low message bit error rate [32]. Under this notion, error-reducing codes are update-efficient. When the message changes \(\leq u\) bits from the previous state \(x \in F_2^n\), we do not change the codeword. Then, the decoder output will be within \(o(k) + u\) bits from the original message.

VIII. Rate-Distortion Counterparts

In this paper, we have focused on error correcting codes possessing good update efficiency and local repairability properties. In principle, these properties are also applicable to
the problem of lossy source coding. Informally, lossy source coding is concerned with optimally compressing a source so that the source can be reconstructed up to a specified distortion from its compressed representation. We formulate the problem more precisely below.

Let \(X_1, X_2, \ldots, X_n \) be a sequence of i.i.d. random variables distributed according to \(P_X \), a probability distribution over the alphabet \(X \). Let \(Y \) denote the reconstruction alphabet, and let

\[
d : X \times Y \to \mathbb{R}_+ \cup \{0\}
\]

denote the distortion function, i.e., \(d(x, y) \) is the penalty incurred by reconstructing a given source symbol \(x \) to the value \(y \). We define a distortion function for sequences as the average per-symbol distortion, i.e.,

\[
d(X^n, Y^n) = \frac{1}{n} \sum_{i=1}^{n} d(X_i, Y_i).
\]

The lossy source coding problem considers the following situation. Given the random sequence \(X^n \), an encoder computes a string of \(Rn \) bits. The decoder, based on this string, computes a reconstruction \(Y^n \). An encoder/decoder pair is admissible if \(E[d(X^n, Y^n)] \leq D \), where \(D \) is a parameter characterizing the tolerable distortion, and the expectation is with respect to the distribution of \(X^n \) and any randomness used by the encoder and decoder. The goal of lossy source coding is to minimize the rate \(R \) of the encoder over all admissible encoder/decoder pairs. As usual in information theory, we consider asymptotic performance as the source sequence length \(n \to \infty \). In this limit, optimal performance is characterized by the rate-distortion function \(\bar{R}(D) \), which specifies the minimum possible rate as a function of the tolerable distortion \(D \). For our purposes, the above brief introduction to lossy source coding will be sufficient; see, e.g., [29] for a more thorough development.

We now turn to defining update-efficiency and local repairability for lossy source codes. Both of these properties are defined analogously to the earlier definitions given for error correcting codes. In more detail, update-efficiency is measured by the maximum number of bits of the \(Rn \) bit encoding of the source that change when the source is changed slightly. For example, when \(X \) is binary, we define update-efficiency as the maximum number of bits of the encoding that change when exactly one bit of \(X^n \) is changed. Depending on the application, more general update models might be appropriate. For example, one could define a broader class of allowed source distortions than just changing a single element of \(X^n \), and measure the number of bits of the encoding that change when the source is distorted according to any of the allowed source distortions. We leave a thorough investigation of different formulations of update-efficiency for future work.

We define the local repairability of a lossy source code as the maximum number of bits of the \(Rn \) bit source encoding that must be queried in order to recover any particular symbol \(Y_i \) of the source reconstruction. That is, a lossy source code has local repairability \(t \) if, for all indices \(i \), at most \(t \) bits of the source encoding must be read in order to compute \(Y_i \).

The main questions to be asked, in the spirit of this paper, are 1) if we allow a compression rate slightly above the optimal rate specified by rate-distortion function, i.e., rate \(\bar{R}(D) + \epsilon \), what is the best possible local recoverability, and 2) what is the best possible update-efficiency (again, as a function of \(\epsilon \))? As a simple example, we consider these questions in the context of compressing a uniform binary source under Hamming distortion. In more detail, this is a special case of the lossy source coding problem where the \(X_i \) are uniformly distributed random bits, \(Y = \{0, 1\} \), and the distortion function is given by \(d(x, y) = 1 \) if \(x \neq y \), and \(d(x, y) = 0 \) if \(x = y \). In other words, the distortion \(d(X^n, Y^n) \) is simply the (fractional) Hamming distance between \(X^n \) and \(Y^n \).

For this case, we briefly describe known results that allow us to make some progress on questions 1 and 2. First, it can be shown that the local repairability must grow as \(\Omega(\log(1/\epsilon)) \), that is, for some \(i \), at least \(\Omega(\log(1/\epsilon)) \) bits of the source encoding must be queried in order to recover \(Y_i \). This is a corollary of known results for LDGM codes (e.g., [13, Theorem 5.4.1]; although the theorem is stated for linear codes, the proof given there applies to arbitrary (even non-linear) codes). Regarding achievability, it is known that LDGM codes can achieve \(O(\log(1/\epsilon)) \) local repairability (e.g., [13, Sec. 5.4] or [33, Theorem 1]), so known results characterize the local repairability up to a constant factor.

Update-efficiency, on the other hand, remains an open question, even for this simple model. As a crude upper bound, we observe that update-efficiency of \(O(1/\epsilon \log(1/\epsilon)) \) can be achieved via random codes. Specifically, the following lemma is a straightforward consequence of, e.g., [34, Theorem 1].

Lemma 18: For any \(0 \leq D \leq 5 \), there exists a lossy source code with length \(n = O(1/\epsilon \log(1/\epsilon)) \) achieving rate at most \(\bar{R}(D) + \epsilon \) (in particular, a random code has this property with high probability).

Armed with this lemma, we copy the strategy from Section IV. Given a large \(n \), we construct a length \(n \) lossy source code by splitting the \(n \)-bit source into blocks of length \(O(1/\epsilon \log(1/\epsilon)) \), and applying the code from Lemma 18 to each block. Changing one bit of the source only affects the corresponding block, so changing one bit of the source requires updating at most \(O(1/\epsilon \log(1/\epsilon)) \) bits of the source encoding. The length \(n \) code clearly has the same compression rate \(\bar{R} \) as the base code of Lemma 18. Also, by linearity of expectation, the distortion achieved by the length \(n \) code is identical to the distortion of the base code. Therefore, \(O(1/\epsilon \log(1/\epsilon)) \) update-efficiency is achievable. However, it is unclear that this is optimal. In particular, we are unaware of any lower bound showing that the update-efficiency has to scale with \(\epsilon \) at all. A thorough study of local recoverability and update-efficiency for lossy source coding is left for future work.

IX. Concluding Remarks: Extensions to Larger Alphabets

Although our results are derived for binary-input channels, as opposed to the larger alphabet channel models usually considered for distributed storage, our proofs generalize in a straightforward manner. The \(q \)-ary generalizations for BEC and BSC are respectively the \(q \)-ary symmetric channel and \(q \)-ary erasure channel; formal definitions appear in, e.g., [35, Sec. 1.2 and Sec. 1.5.3].
The existential result of Section IV extends to the case of q-ary channels. See, [26, Sec. IIIB, Remark 6] for more detail on how the error-exponent result for BSC extends to q-ary case. There are also results concerning the error-exponent of q-ary low density codes that can be used to extend Theorem 6. The result one can most directly use is perhaps [36].

The converse results for Section V and VI, in particular Theorem 7, Theorem 8 and Theorem 15 can easily be stated for the case of q-ary channel. The observations regarding adversarial error case of Section III are also extendable to q-ary case in a straight-forward manner.

ACKNOWLEDGMENT

A. M. thanks Alexander Barg, Yury Polyanskiy and Barna Saha for useful discussions.

REFERENCES

Arya Mazumdar (S’05–M’13) is an assistant professor in University of Minnesota-Twin Cities (UMN). Before coming to UMN, he was a post-doctoral scholar at the Massachusetts Institute of Technology (MIT). He received the Ph.D. degree in Electrical and Computer Engineering from the University of Maryland, College Park, in 2011.

Arva is a winner of the 2010 IEEE ISIT Student Paper Award. He is also the recipient of the Distinguished Dissertation Fellowship Award, 2011, at the University of Maryland. He spent the summers of 2008 and 2010 at the Hewlett-Packard Laboratories, Palo Alto, CA, and IBM Almaden Research Center, San Jose, CA, respectively. Arya’s research interests include error-correcting codes, reliable memory and storage, and information theory.

Venkat Chandar received S.B. degrees in EECS and mathematics in 2006, an M. Eng. in EECS in 2006, and a Ph.D. in EECS in 2010, all from MIT.

His current research interests include coding theory and algorithms, with an emphasis on the construction and analysis of sparse graph codes for various problems related to communication, compression, sensing, and information theoretic secrecy.
Gregory W. Wornell (S’83-M’91-SM’00-F’04) received the B.A.Sc. degree in electrical engineering from the University of British Columbia, Vancouver, BC, Canada, and the S.M. and Ph.D. degrees in electrical engineering and computer science from the Massachusetts Institute of Technology, Cambridge, MA, in 1985, 1987, and 1991, respectively.

Since 1991, he has been on the faculty at MIT, where he is the Sumitomo Professor of Engineering in the department of Electrical Engineering and Computer Science (EECS). He leads the Signals, Information, and Algorithms Laboratory in the Research Laboratory of Electronics, and co-chairs the EECS department graduate program. He has held visiting appointments at the former AT&T Bell Laboratories, Murray Hill, NJ, the University of California, Berkeley, CA, and Hewlett-Packard Laboratories, Palo Alto, CA.

His research interests and publications span the areas of information theory, digital communication, and signal processing, and include algorithms and architectures for wireless networks, sensing and imaging systems, multimedia applications, and aspects of computational biology and neuroscience.

Dr. Wornell has been involved in the Information Theory and Signal Processing Societies of the IEEE in a variety of capacities, and maintains a number of close industrial relationships and activities. He has won a number of awards for both his research and teaching.