Low Rank Approximation using Error Correcting Coding Matrices

Shashanka Ubaru
Arya Mazumdar
Yousef Saad
University of Minnesota-Twin Cities, MN USA

Abstract

Low-rank matrix approximation is an integral component of tools such as principal component analysis (PCA), as well as is an important instrument used in applications like web search, text mining and computer vision, e.g., face recognition. Recently, randomized algorithms were proposed to effectively construct low rank approximations of large matrices. In this paper, we show how matrices from error correcting codes can be used to find such low rank approximations. The benefits of using these code matrices are the following: (i) They are easy to generate and they reduce randomness significantly. (ii) Code matrices have low coherence and have a better chance of preserving the geometry of an entire subspace of vectors; (iii) Unlike Fourier transforms or Hadamard matrices, which require sampling $O(k \log k)$ columns for a rank-k approximation, the log factor is not necessary in the case of code matrices. (iv) Under certain conditions, the approximation errors can be better and the singular values obtained can be more accurate, than those obtained using Gaussian random matrices and other structured random matrices.

1. Introduction

Many scientific computations, data analysis and machine learning applications (Halko et al., 2011; Drineas et al., 2006), lead to large dimensional matrices which can be well approximated by a low dimensional basis. It is more efficient to solve such computational problems by first transforming these large matrices into a low dimensional space, while preserving the invariant subspace that captures the essential structure of the matrix. Several algorithms have been proposed in the literature for finding such low rank approximations of a matrix (Ye, 2005; Haeffele et al., 2014; Papailiopoulos et al., 2013). Recently, research focused on developing techniques which use randomization for computing low rank approximations and matrix decompositions of such matrices. It is found that randomness provides an effective way to construct low dimensional bases with high reliability and computational efficiency.

The randomization techniques for matrix approximations (Halko et al., 2011; Martinsson et al., 2006; Liberty et al., 2007) aim to compute a basis that approximately spans the input matrix A, by sampling the matrix using Gaussian random matrices. This task is accomplished by first forming the matrix-matrix product $Y = A\Omega$, where Ω is a random matrix of smaller dimension, and then computing the orthonormal basis of $Y = QR$ that identifies the range of the reduced matrix Y. It can be shown that $A \approx QQ^*A$ with high probability. Recently, it has been observed that structured random matrices, like subsampled random Fourier transform (SRFT) and Hadamard transform (SRHT) matrices can also be used in place of Gaussian random matrices (Liberty, 2009; Woolfe et al., 2008; Tropp, 2011). This paper demonstrates how error correcting coding matrices can be a good choice for computing low rank approximations.

The input matrices whose low rank approximation is to be computed, usually have very large dimensions (e.g., in the order of $10^6 - 10^8$). In order to form a Gaussian random matrix that samples the input matrix in randomized algorithms, we need to generate a large number of random numbers. This could be a serious practical issue, (in terms of time complexity and storage). This issue can be addressed by using the structured random matrices, like SRFT and SRHT matrices. However, for a rank-k approximation, these matrices require sampling $O(k \log k)$ columns. Other practical issues arise such as: the Fourier Transform matrices require handling complex numbers and the Hadamard matrices exist only for the sizes which are in powers of 2. These drawbacks can be overcome if the code matrices presented in this paper are used for sampling input matrices.

In digital communication, information is encoded by adding redundancy into (predominantly binary) vectors or
2. Preliminaries

First, we present some of the notation used and give a brief description of error correcting coding techniques that are used in communication systems and information theory.

2.1. Notation and Problem Formulation

Throughout the paper, \(\| \cdot \| \) refers to the \(\ell_2 \) norm. We use \(\| \cdot \|_F \) for the Frobenius norm. The singular value of a matrix is denoted by \(\sigma_j(\cdot) \). We use \(e_j \) for the \(j \)th standard basis vector. Given a random subset \(T \) of indices in \(\{1, \ldots, 2^r\} \) with size \(n \) and \(r \geq \lceil \log_2 n \rceil \), we define a restriction (sampling) operator \(S_T: \mathbb{R}^{2^r} \rightarrow \mathbb{R}^T \) given by

\[
(S_T x)(j) = x_j, \quad j \in T.
\]

A Rademacher random variable takes values \(\pm 1 \) with equal probability. We write \(\varepsilon \) for a Rademacher variable.

In low rank approximation methods, we compute an orthonormal basis which approximately spans the range of an input matrix \(A \) of size \(m \times n \). That is, a matrix \(Q \) having orthonormal columns such that \(A \approx QQ^* A \). The basis matrix \(Q \) contains as few columns as possible, but it needs to be an accurate approximation of the input matrix. So, we seek a matrix \(Q \) with \(k \) orthonormal columns such that

\[
\| A - QQ^* A \| \leq \epsilon, \quad (1)
\]

for a positive error tolerance \(\epsilon \). The theoretical minimum that can be achieved with such low rank approximations in terms of singular values is given by the Eckart-Young theorem (Eckart & Young, 1936)

\[
\min_{\text{rank}(X) \leq k} \| A - X \| = \sigma_{k+1}, \quad (2)
\]

and the minimizer is \(X = A_k \), the best rank-\(k \) approximation to a matrix as computed with the singular value decomposition. That is, the columns of the matrix \(Q \) in (1) are the \(k \)-dominant left singular vectors of \(A \).

2.2. Error Correcting Codes

In communication systems, data are transmitted from a source (transmitter) to a destination (receiver) through physical channels. These channels are usually noisy, causing errors in the data received. In order to facilitate the ability to detect and correct these errors in the receiver, error-correcting codes are used (MacWilliams & Sloane, 1977). A block of information (data) symbols are encoded in to a binary vector\(^1\), also called a codeword, by the encoding error-correcting code. Error-correcting coding methods check the correctness of the codeword received. The set of codewords corresponding to a set of data-vectors (or symbols) that can possibly be transmitted, is called the code. Hence, a code \(C \) is a subset of \(\mathbb{F}_2^\ell \), \(\ell \) being an integer.

A code is said to be linear when adding two codewords of the code coordinate-wise using modulo-2 arithmetic results in a third codeword of the code. Usually a linear code \(C \) is represented by the tuple \([\ell, r] \), where \(\ell \) represents the codeword length and \(r = \log_2 |C| \) is the number of information bits that can be encoded by the code. There are \(\ell - r \) redundant bits in the codeword, which are sometimes called parity check bits, generated from messages using an appropriate rule. It is not necessary for a codeword to have the information bits as \(r \) of its coordinates, but the information must be uniquely recoverable from the codeword.

It is perhaps obvious that a linear code \(C \) is a linear subspace of dimension \(r \) in the vector space \(\mathbb{F}_2^\ell \). The basis of \(C \) can be written as the rows of a matrix, which is known as the generator matrix of the code. The size of the generator matrix \(G \) is \(r \times \ell \), and for any information vector \(\mathbf{m} \in \mathbb{F}_2^\ell \), the corresponding codeword is found by the linear map:

\[
\mathbf{c} = \mathbf{m} G.
\]

Note that all the arithmetic operations above are over the binary field \(\mathbb{F}_2 \). To encode \(r \) bits, we must have \(2^r \) unique codewords. Then, we may form a matrix of size \(2^r \times \ell \) by stacking up all codewords that are formed by the generator matrix of a given linear coding scheme,

\[
\mathbf{C} = \left[\begin{array}{c}
\mathbf{M} \\
\mathbf{G}
\end{array} \right].
\]

For a given tuple \([\ell, r] \), different error correcting coding schemes have different generator matrices and the resulting codes have different properties. For example, for any

\(^1\)Here, and in the rest of the text, we are considering only binary codes. Codes over larger alphabets are also quite common.
two integers \(t \) and \(q \), a BCH code (Bose & Ray-Chaudhuri, 1960) has length \(\ell = 2^q - 1 \) and dimension \(r = 2^q - 1 - tq \). Any two codewords in this BCH code maintain a minimum (Hamming) distance of at least \(2t + 1 \) between them. The pairwise minimum distance is an important parameter of a code and is called just the minimum distance of the code. As a linear code is a subspace of a vector space, the null-space of the code is another well-defined subspace. This is called the dual of the code. The dual of the \([2^q - 1, 2^q - 1 - t; q]\)-BCH code is a code with length \(2^q - 1 \), dimension \(tq \) and minimum distance at least \(2^q - 1 - (t - 1)2^{q/2} \). The minimum distance of the dual code is called the dual distance of the code.

The codeword matrix \(C \) has \(2^\ell \) codewords each of length \(\ell \) (a \(2^\ell \times \ell \) matrix), i.e., a set of \(2^\ell \) vectors in \(\{0, 1\}^\ell \). Given a codeword \(c \in C \), let us map it to a vector \(\phi \in \mathbb{R}^\ell \) by setting \(1 \mapsto \frac{1}{\sqrt{\ell}} \) and \(0 \mapsto \frac{-1}{\sqrt{\ell}} \). In this way, a binary code \(C \) gives rise to a code matrix \(\Phi = (\phi_1, \ldots, \phi_{2^\ell})^* \).

Such a mapping is called binary phase-shift keying (BPSK) and appeared in the context of sparse-recovery (e.g., p. 66 (Mazumdar, 2011)). For codes with dual distance \(\geq 3 \), this code matrix \(\Phi \) will have orthonormal columns (see Lemma 2 and its proof). We will use the dual BCH code matrices for numerical experiments in this paper. As we will see, rows of such matrices are near-orthogonal and hence preserve the geometry of the space. In the randomized techniques for matrix approximations, we can use a subsampled and scaled version of this matrix \(\Phi \) to sample a given input matrix and find the active subspaces of the matrix.

3. Construction of Subsampled Code Matrix

For an input matrix \(A \) of size \(m \times n \), and a target rank \(k \), we choose \(r \geq \lceil \log_2 n \rceil \) and \(\ell = k + p \), where \(p \) is a small oversampling to ensure that the samples have a much better chance of spanning the required subspace. The intuition for oversampling is well documented in (Halko et al., 2011; Gu, 2014). We consider an \([\ell, r]\)-linear coding scheme and form the sampling matrix as follows: we draw the sampling test matrix \(\Omega \) as

\[
\Omega = \sqrt{\frac{2^\ell}{\ell}} D S \Phi, \tag{4}
\]

where

- \(D \) is a random \(n \times n \) diagonal matrix whose entries are independent random signs, i.e., random variables uniformly distributed on \(\{\pm 1\} \).
- \(S \) is the uniformly random downsampler, an \(n \times 2^\ell \) matrix whose rows are randomly selected from a \(2^\ell \times 2^\ell \) identity matrix.
- \(\Phi \) is the \(2^\ell \times \ell \) code matrix, generated using an \([\ell, r]\)-linear coding scheme, with BPSK mapping and scaled by \(2^{-r/2} \) such that all columns have unit norm.

Intuition The design of a subsampled code matrix is similar to the design of SRFT and SRHT matrices. The intuition for using such a design is well established in (Tropp, 2011; Halko et al., 2011). The matrix \(\Phi \) has entries with magnitude \(\pm 2^{-r/2} \) and has orthonormal columns when a coding scheme with dual distance of the codes is \(\geq 3 \) is used. The scaling \(\sqrt{\frac{2^\ell}{\ell}} \) is used to make the energy of the sampling matrix equal to unity, i.e., to make the rows of \(\Omega \) unit vectors. The purpose of multiplying by \(D \) is to flatten out input vectors. We refer to (Tropp, 2011) for further details.

For a fixed unit vector \(x \), the first component of \(x^* D S \Phi \) is given by \((x^* D S \Phi)_1 = \sum_{j=1}^n x_j \varepsilon_j \phi_{ij} \), where \(\phi_{ij} \) are components of the code matrix \(\Phi \), the index \(i \) depends on the downsampler \(S \) and \(\varepsilon_j \) is the Rademacher variable from \(D \). This sum clearly has zero mean and since entries of \(\Phi \) have magnitude \(2^{-r/2} \), the variance of the sum is \(2^{-r} \). The Hoeffding inequality (Hoeffding, 1963) shows that

\[
\Pr\{ |(x^* D S \Phi)_1| \geq \ell \} \leq 2e^{-2\ell^2/2}.
\]

That is, the magnitude of the first component of \(x^* D S \Phi \) is about \(2^{-r/2} \). Similarly, the argument holds for the remaining entries. Therefore, it is unlikely that any one of the \(\ell \) components of \(x^* D S \Phi \) is larger than \(\sqrt{2 \log(2\ell)/2^r} \). (The failure probability is \(\ell^{-1} \)).

4. Algorithm

We use the same prototype algorithm as discussed in (Halko et al., 2011) for the low rank approximation and decomposition of input matrix \(A \). The subsampled code matrices given in (4), generated from a chosen coding scheme is used as the sampling test matrix. The algorithm is as follows:

Algorithm 1 Prototype Algorithm

Input: An \(m \times n \) matrix \(A \), a target rank \(k \) and an oversampling parameter \(p \).

Output: Rank-\(k \) factors \(U, \Sigma, \) and \(V \) in an approximate SVD \(A \approx U \Sigma V^* \).

1. Form an \(n \times \ell \) subsampled code matrix \(\Omega \), as described in Section 3 and (4), using an \([\ell, r]\)-linear coding scheme, where \(\ell = k + p \) and \(r \geq \lceil \log_2 n \rceil \).
2. Form the \(m \times \ell \) sample matrix \(Y = A \Omega \).
3. Form an \(m \times \ell \) orthonormal matrix \(Q \) such that \(Y = QR \).
4. Form the \(\ell \times n \) matrix \(B = Q^* A \).
5. Compute the SVD of the small matrix \(B = U \Sigma V^* \).
6. Form the matrix \(U = Q^* \).

5. Analysis

This section discusses the performance analysis of the subsampled code matrices as sampling matrices in Algorithm 1. First, we show that these matrices preserve the geometry of an entire subspace of vectors. Next, we highlight the differences between the construction of subsampled code matrices used here and the construction of SRHT given in (Halko et al., 2011; Tropp, 2011). Finally, we derive the bounds for the approximation error and the singular values obtained from the algorithm.

Setup Let \(A \) be an \(m \times n \) matrix with a singular value decomposition given by \(A = UΣV^* \), whose low rank approximation is to be evaluated, and partition its SVD as follows

\[
A = U \begin{bmatrix} Σ_1 & \cdots & Σ_{n-k} \end{bmatrix} \begin{bmatrix} V^*_1 & \cdots & V^*_n \end{bmatrix} \begin{bmatrix} k \end{bmatrix} \begin{bmatrix} n-k \end{bmatrix}. \tag{5}
\]

Let \(Ω \) be the \(n \times ℓ \) test (sampling) matrix, where \(ℓ \) is the number of samples. Consider the matrices

\[
Ω_1 = V^*_1 Ω \quad \text{and} \quad Ω_2 = V^*_2 Ω. \tag{6}
\]

The objective of any low rank approximation algorithm is to try and approximate the subspace which spans the top \(k \) left singular vectors of \(A \). The test matrix \(Ω \) is said to preserve the geometry of an entire subspace of vectors, if for any orthonormal matrix \(V \), a matrix of the form \(V^*Ω \) is well conditioned (Halko et al., 2011).

5.1. Subsampled Code Matrices Preserve Geometry

Recall from Section 3 the construction of the ‘tall and thin’ \(n \times ℓ \) subsampled error correcting code matrices \(Ω \). One of the critical facts to show is that these matrices approximately preserve the geometry of an entire subspace of vectors. An important property of the code matrices \(Φ \) is that the columns are all orthonormal, if the codes satisfy a rather mild condition. Indeed, if the dual distance of a code is at least three then this property is satisfied.

Another crucial advantage of the code matrices is that they have very low coherence. Coherence is defined as the maximum inner product between any two rows. This is in particular true when the minimum distance of the code is close to half the length. If the minimum distance of the code is \(d \) then the code matrix generated from an \([ℓ, r]\)-code has coherence equal to \(\frac{ℓ-2d}{2} \). For example, if we consider dual BCH code (see Sec. 2.2) the coherence is \(\frac{2(ℓ-1)\sqrt{r+1}}{2r} \). Low coherence ensures near orthogonality of rows. This is a desirable property in many applications such as compressed sensing and sparse recovery.

Tropp, in (Tropp, 2011) has given an extensive analysis on how the subsampled Hadamard matrices preserves the geometry of an entire subspace of vectors. We use similar arguments to analyze the subsampled code matrices.

The construction given in (4) ensures that the energy is uniformly distributed due to the scaling. Multiplying by \(D \) ensures that the input vectors are flattened out and that no components of the form, \(x^*DSΦ \) are larger than \(\sqrt{2\log(2ℓ)/2r} \). The following theorem, similar to Theorem 11.1 in (Halko et al., 2011) and Theorem 1.3 in (Tropp, 2011), shows that code matrices approximately preserve the geometry of entire subspace of vectors.

Theorem 1 (Code matrices preserve geometry) Fix an \(n \times k \) orthonormal matrix \(V \), and draw an \(n \times ℓ \) subsampled code matrix as in (4), using an \([ℓ, r]\)-linear code that has dual distance \(≥ 3 \), where \(r ≥ \lceil \log_2(2n) \rceil \) and \(ℓ \) satisfies

\[
n ≥ αℓ log(ℓ).
\]

Then

\[
\sqrt{\frac{(1-δ)n}{ℓ}} ≤ σ_k(V^*Ω) \quad \text{and} \quad σ_1(V^*Ω) ≤ \sqrt{\frac{(1+η)n}{ℓ}}
\]

with probability at least \(1 - O(ℓ^{-1}) \). The parameters \(α, δ \) and \(η \) depend on the inputs \(n \) and \(ℓ \).

The theorem can be proved using the following three lemmas. The first lemma shows that if a code has dual distance \(≥ 3 \), the resulting code matrix \(Φ \) has orthonormal columns.

Lemma 2 (Code matrix with orthonormal columns) A code matrix \(Φ \), generated by a coding scheme which results in codes that have dual distance between the codewords \(≥ 3 \), has orthonormal columns.

Proof. If a code has dual distance \(3 \), then the corresponding code matrix (stacked up codewords as rows) is an orthogonal array of strength 2 (Delsarte & Levenshtein, 1998). This means all the tuples of bits, i.e., \{0, 0\}, \{0, 1\}, \{1, 0\}, \{1, 1\}, appear with equal frequencies in any two columns of the codeword matrix \(C \). As a result the Hamming distance between any two columns of \(C \) is exactly \(2r-1 \) (half the length of the column). This means after the BPSK mapping, the inner product between any two codewords will be zero. It is easy to see that the columns are unit norm as well.

This fact helps us use some of the arguments given in (Tropp, 2011). Given below is a modification of Lemma 3.4 from (Tropp, 2011) which shows that randomly sampling the rows of such a code matrix results in a well-conditioned matrix.
Lemma 3 (Row sampling) Let \(\Phi \) be an \(2^r \times \ell \) code matrix (with orthonormal columns), and let \(M = 2^r \max_{j=1,\ldots,2^r} \|e_j^\Phi\|^2 \). For a positive parameter \(\alpha \), select the sample size
\[
n \geq \alpha M \log(\ell).
\]
Draw a random subset \(T \) from \(\{1, \ldots, 2^r\} \) by sampling \(n \) coordinates without replacement. Then,
\[
\sqrt{\frac{(1-\delta)n}{2^r}} \leq \sigma_\ell(S_T\Phi) \quad \text{and} \quad \sigma_1(S_T\Phi) \leq \sqrt{\frac{(1+\eta)n}{2^r}}
\]
with failure probability at most
\[
\ell \cdot \left[\frac{e^{-\delta}}{(1-\delta)(1-\delta)} \right]^{\alpha \log(\ell)} + \ell \cdot \left[\frac{e^{\eta}}{(1+\eta)(1+\eta)} \right]^{\alpha \log(\ell)}
\]
where \(\delta \in [0, 1) \) and \(\eta > 0 \).

Since \(n \) is fixed and \(M = \ell \) for a code matrix (all the entries of the matrix are \(\pm 2^{-r/2} \)), we get the condition \(n \geq \alpha \ell \log(\ell) \) in Theorem 1. The parameters \(\alpha, \delta \) and \(\eta \) are chosen based on the inputs \(\ell \) and \(n \) and the failure probability accepted. The bounds on the singular values of the above lemma are proved in (Tropp, 2011) using Matrix Chernoff Bounds. Since we use the scaling \(\sqrt{\frac{n}{\ell}} \), the bounds on the singular values of the subsampled code matrix \(\Omega \) will be
\[
\sqrt{\frac{(1-\delta)n}{\ell}} \leq \sigma_\ell(\Omega) \quad \text{and} \quad \sigma_1(\Omega) \leq \sqrt{\frac{(1+\eta)n}{\ell}}.
\]

Lemma 4 (Min-Max Property) Let \(\Omega \) be an \(n \times \ell \) matrix whose singular values are bounded as in (8). Let \(V \) be an \(n \times k \) matrix with orthonormal columns and \(\ell > k \), we have
\[
\sqrt{\frac{(1-\delta)n}{\ell}} \leq \sigma_\ell(V^*\Omega) \leq \sigma_k(V^*\Omega) \quad \text{and} \quad \sigma_1(V^*\Omega) \leq \sigma_1(\Omega) \leq \sqrt{\frac{(1+\eta)n}{\ell}}.
\]

Proof. Consider \(A = \Omega V^* \) and \(B = V^*\Omega(V^*\Omega)^* = V^*AV \). By Min-Max theorem (Golub & Van Loan, 2013), for \(\ell > k \) we have
\[
\lambda_1(B) = \lambda_1(V^*AV) \leq \lambda_1(A) \quad \text{and} \quad \lambda_\ell(A) \leq \lambda_k(V^*AV) = \lambda_k(B),
\]
where \(\lambda_1(.) \) is the largest eigenvalue of a matrix and \(\lambda_\ell(A) \) and \(\lambda_k(B) \) are the smallest nonzero eigenvalues of \(A \) and \(B \), respectively. This completes the proof for Lemma 4 and Theorem 1.

Theorem 1 shows that \(V^*\Omega \) is well conditioned. This proves that the subsampled code matrix approximately preserves the geometry of an entire subspace of vectors.

Differences in the construction An important difference between the construction of subsampled code matrices given in (4) and the construction of SRHT or SRFT given in (Halko et al., 2011; Tropp, 2011) is in the way these matrices are subsampled. In the case of SRHT, a Hadamard matrix of size \(n \times n \) is considered and \(\ell \) out of \(n \) columns are sampled at random, \((n \text{ must be a power of } 2) \). In contrast, in the case of subsampled code matrices, a \(2^r \times \ell \) code matrix generated from an \([\ell, r]\)-linear coding scheme is considered, and \(n \) out of \(2^r \) rows are sampled at random. The subsampling will not affect the distinctness of the rows selected in the code matrix (or the coherence). This need not be true in the case of SRHT. The importance of the distinctness of rows is discussed next.

5.2. Logarithmic factor

For a rank-\(k \) approximation using subsampled Fourier or Hadamard matrices, we need to sample \(O(k \log k) \) columns. This logarithmic factor emerges as a necessary condition in the theoretical proof (given in (Tropp, 2011)) that shows that these matrices approximately preserve the geometry of an entire subspace of input vectors. The log factor is also necessary to tackle the worst case input matrices. The discussions in Sec. 11 of (Halko et al., 2011) and Sec. 3.3 of (Tropp, 2011) give more details. In the case of subsampled code matrices, we saw that the log factor does not arise in the theoretical analysis given in Section 5.1. The code matrices also take care of the worst case input matrices without the log factor. To see why this is true, let us consider the worst case example for orthonormal matrix \(V \) described in Remark 11.2 of (Halko et al., 2011).

An infinite family of worst case examples of the matrix \(V \) is as follows. For a fixed integer \(k \), let \(n = k^2 \). Form an \(n \times k \) orthonormal matrix \(V \) by regular decimation of the \(n \times n \) identity matrix. That is, \(V \) is a matrix whose \(j \)th row has a unit entry in column \((j-1)/k \) when \(j \equiv 1 \mod k \) and is zero otherwise. This type of matrix is troublesome when DFT or Hadamard matrices are used for sampling.

Suppose that we apply \(\Omega = DFR^* \) to the matrix \(V^* \), where \(D \) is same as in (4), \(F \) is an \(n \times n \) DFT or Hadamard matrix and \(R \) is \(\ell \times n \) matrix that samples \(\ell \) coordinates from \(n \) uniformly at random. We obtain a matrix \(X = V^*\Omega = WR^* \), which consists of \(\ell \) random columns sampled from \(W = V^*DF \). Up to scaling and modulation of columns, \(W \) consists of \(k \) copies of a \(k \times k \) DFT or Hadamard matrix concatenated horizontally. To ensure that \(X \) is well conditioned (preserve geometry), we need \(\sigma_k(X) > 0 \). That is, we must pick at least one copy of each of the \(k \) distinct columns of \(W \). This is the coupon collector’s problem (Motwani & Raghavan, 1995) in disguise and to obtain a complete set of \(k \) columns with non-negligible probability, we must draw at least \(k \log(k) \) columns.
In the case of code matrices, we apply a subsampled code matrix \(\Omega = DS\Phi \) to the matrix \(V^* \). We obtain \(X = V^*\Omega = V^*DS\Phi \), which consists of \(k \) randomly selected rows of the code matrix \(\Phi \). That is, \(X \) consists of \(k \) distinct codewords of length \(\ell \). The code matrix has low coherence and all rows are distinct. This means \(X \) contains \(k \) independent (near orthonormal) rows and \(\sigma_k(X) > 0 \); as a result Theorem 1 holds and the log factor is not necessary. Thus, for the worst case scenarios we have an \(O(\log k) \) factor improvement over other structured matrices. More importantly, this shows that our construction is order optimal with the immediate lower bound of \(O(k) \) in the number of samples required with deterministic matrices.

5.3. Error bounds

Algorithm 1 constructs an orthonormal basis \(Q \) for the range of \(Y \), and the goal is to quantify how well this basis captures the action of the input matrix \(A \). Let \(QQ^* = P_Y \) where \(P_Y \) is the unique orthogonal projector with range(\(P_Y \))=range(\(Y \)). If \(Y \) is full rank, we can express the projector as : \(P_Y = Y(Y^*Y)^{-1}Y^* \). We seek to find an upper bound for the approximation error given by,

\[
\|A - QQ^*A\| = \|(I - P_Y)A\|.
\]

The deterministic bounds for the approximation error for Algorithm 1 is given in (Halko et al., 2011) and the bounds for the singular values are given in (Gu, 2014). We restate the theorem 9.1 in (Halko et al., 2011) below:

Theorem 5 (Deterministic error bound) Let \(A \) be \(m \times n \) matrix with singular value decomposition given by \(A = U\Sigma V^* \), and fix \(k \ge 0 \). Choose a test matrix \(\Omega \) and construct the sample matrix \(Y = A\Omega \). Partition \(\Sigma \) as in (5), and define \(\Omega_1 \) and \(\Omega_2 \) via (6). Assuming that \(\Omega_1 \) is full row rank, the approximation error satisfies,

\[
\|(I - P_Y)A\| \leq \|\Sigma_2\|_2^2 + \|\Sigma_2\Omega_2\Omega_1^\dagger\|_2^2
\]

where \(\|\cdot\|_2 \) denotes either the spectral or Frobenius norm.

An elaboration for the above theorem can be found in (Halko et al., 2011). Equation (11) simplifies to,

\[
\|A - QQ^*A\| \leq \sigma_{k+1} \sqrt{1 + \|\Omega_2\|_2^2} / \|\Omega_1\|_2.
\]

Recently Ming Gu (Gu, 2014), developed deterministic lower bounds for the singular values obtained from randomization algorithms, particularly for the power method (Halko et al., 2011), which is one of the alternatives of randomized algorithms. Given below is the modified version of Theorem 4.3 in (Gu, 2014) for Algorithm 1.

Theorem 6 (Deterministic singular value bounds) Let \(A = U\Sigma V^* \) be the SVD of \(A \), for a fix \(k \), and let \(V^*\Omega \) be partitioned as in (6). Assuming that \(\Omega_1 \) is full row rank, then Algorithm 1 must satisfy for \(j = 1, \ldots, k \):

\[
\sigma_j \geq \sigma_j(A_k) \geq \frac{\sigma_j}{\sqrt{1 + \|\Omega_2\|_2^2} / \|\Omega_1\|_2^2}
\]

where \(\sigma_j \) are the \(j \)th singular value of \(A \) and \(A_k \) is the rank-\(k \) approximation obtained by our algorithm.

The proof for the above theorem can be seen in (Gu, 2014). Next, we derive the approximation error bounds when the test matrix \(\Omega \) is the subsampled code matrix defined by Lemma 2. The upper and lower bounds for the singular values obtained are also derived.

Theorem 7 (Error bounds for code matrix) Let \(A \) be \(m \times n \) matrix with singular values \(\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \ldots \). Generate a subsampled code matrix \(\Omega \) with dual distance \(\geq 3 \) as in (4) and \(r \geq \lceil \log_2(n) \rceil \) be the length of the message vector used to generate the code matrix. Then the approximation error for the algorithm satisfies

\[
\|A - QQ^*A\| \leq \sigma_{k+1} \sqrt{1 + \frac{2^r}{(1 - \delta)n}} \quad \text{and}
\]

\[
\|A - QQ^*A\|_F \leq \left(\sum_{j=k+1}^{n} \frac{\sigma_j^2}{\sigma_j} \right)^{1/2} \sqrt{1 + \frac{2^r}{(1 - \delta)n}}.
\]

The bounds for the singular values obtained are:

\[
\sigma_j \geq \sigma_j(A_k) \geq \frac{\sigma_j}{\sqrt{1 + \left(\frac{2^r}{(1 - \delta)n} \right) \left(\frac{\sigma_{k+1}}{\sigma_j} \right)^2}}
\]

with failure probability \(O(\ell^{-1}) \).

Proof. For the approximate error bounds given in the theorem, we start from equation (12) in Theorem 5. The terms that depend on the choice of test matrix \(\Omega \) are \(\|\Omega_2\|_2^2 \) and \(\|\Omega_1\|_2^2 \). Theorem 1 shows that the code matrix \(\Omega \) preserves the geometry of the entire subspace of vectors and also ensures that the spectral norm of \(\Omega_1 \) is under control. From Lemma 3.6 in (Liberty et al., 2007), we have

\[
\|\Omega_1\|_2^2 = \frac{1}{\sigma_k^2(\Omega_1)} \leq \frac{1}{(1 - \delta)n}.
\]

We bound the spectral norm of \(\Omega_2 \) as follows \(\|\Omega_2\|_2^2 = \|V_2^*\Omega_2\|_2^2 < \|V_2\|_2^2 / \|\Omega_2\|_2^2 = \|\Omega_2\|_2 = \sigma_2^2(\Omega_2) \), since \(V_2 \) is an orthonormal matrix. The code matrix \(\Phi \) is orthonormal and has all its singular values equal to one. Thus, the singular values of \(\sqrt{\ell / r} \Phi \) are \(\sqrt{\ell / r} \). We need the following lemma.

Lemma 8 Let \(\Phi \) be a \(2^r \times r \) code matrix with orthogonal columns and have singular values equal to \(\sigma_1(\Phi) = \ldots =
Low Rank Approximation using Error Correcting Coding Matrices

\[\sigma_1(\Phi) = \sqrt{\frac{2^r}{\ell}} \]. Let \(\Omega = S_T \Phi \), a sub-matrix of \(\Phi \) formed by selecting \(n \) out of \(2^r \) rows, randomly. Then,

\[\sigma_1(\Omega) \leq \sigma_1(\Phi) = \sqrt{\frac{2^r}{\ell}} \] (15)

Proof of the above lemma is straightforward from Theorem 3.1 and Remark 3.1 in (Gu, 2014). Also see (Golub & Van Loan, 2013) for details. Thus, we have

\[\|\Omega_2\|^2 \leq \sigma_1^2(\Omega) \leq \frac{2^r}{\ell} \]

and substituting these values in (12) will complete the proof. Similarly, for the bounds on singular values we start from the equation (13) in Theorem 6. We substitute the above values for \(\|\Omega_2\|^2 \) and \(\|\Omega_1\|^2 \).

Remark 1 (Value of \(\delta \)) The value of \(\delta \) depends upon the size \(n \), length of the codeword \(\ell \) and the failure probability needed. We have from Theorem 1 and Lemma 3,\n
\[\alpha = \frac{n}{\log(\ell)} \]. If \(\alpha = 4 \), then for a failure probability of \(O(\ell^{-1}) \) we have \(\delta = 5/6 \). For \(\alpha = 9 \), we have \(\delta = 3/5 \) and if \(\alpha = 14 \), we have \(\delta = 1/2 \) for a failure probability of \(O(\ell^{-1}) \). A greater value of \(\alpha \) implies a smaller value of \(\delta \), resulting in better error bounds. In practice, we can expect \(\alpha \geq 10 \). So, \(\delta \) is at most 0.6. For \(\delta \leq 0.6 \), the error bounds obtained for code matrices are better than those obtained for Gaussian random matrices and other structured random matrices (Halko et al., 2011).

Choice of error-correcting code In the theoretical analysis above, we could choose any coding schemes with dual distance \(\geq 3 \), since the corresponding code matrix \(\Phi \) will be orthogonal. Code matrices generated by any linear coding scheme can be used in place of Gaussian random matrices. In fact, Hadamard matrices are also a class of Linear code, with variants known as Hadamard code, Simplex code or 1st-order Reed-Muller code. The dual distance of Hadamard code is 3. As there are many available classes of algebraic and combinatorial codes we have a large pool of candidate matrices. In this paper we chose dual BCH codes as they particularly have low coherence, and turn out to perform quite well.

6. Numerical Experiments

The following experiments will illustrate the performance of subsampled code matrices as sampling matrices in Algorithm 1. Our first experiment is with a 4770 \(\times \) 4770 matrix named Kohonen from the Pajek network (a directed graph’s matrix representation), available from the UFL Sparse Matrix Collection (Davis & Hu, 2011). Such graph Laplacian matrices are commonly encountered in machine learning and image processing applications. The performance of the dual BCH code matrix, Gaussian matrix, subsampled Fourier transform (SRFT) and Hadamard (SRHT) matrices are compared as sampling matrices \(\Omega \) in Algorithm 1. For SRHT, we had to subsample the rows as well (similar to code matrices), since the input size is not a power of 2. All experiments were implemented in matlab v8.1.

Figure 1 gives the actual error \(e_\ell = \|A - Q^{(\ell)}(Q^{(\ell)})^*A\| \) for each \(\ell \) number of samples when a subsampled dual BCH code matrix, a Gaussian matrix, SRFT and SRHT matrices are used as sampling matrices, respectively. The minimum rank-\(\ell \) approximation error \(\sigma_{\ell+1} \) is also given. Figure 2 plots the singular values obtained from Algorithm 1, for \(\ell = 255 \) and different sampling matrices \(\Omega \) used.

Table 1 compares the errors \(e_\ell \) for \(\ell \) number of samples, obtained for a variety of input matrices from different applications when subsampled dual BCH code, Gaussian and SRFT matrices were used. It also provides the theoretical minimum \(\sigma_{\ell+1} \) value for each input matrices. All matrices were obtained from the UFL database. Matrices lpi_ceria3d (4400 \(\times \) 3576) and dcter3 (21777 \(\times \) 7647) are from lin-
In the first step, we compute the principal components (dimensionality reduction) of mean shifted training image matrices on face recognition. The face dataset is obtained from the AT&T Labs Cambridge database of faces (Cambridge, 2002). There are ten different images of each of these fast transform techniques.

We showed that the code matrices lead to an order optimal $O(k)$ in the worst-case guaranteed sampling complexity, an improvement by a factor of $O(nk^2)$ over other known structured matrices. This is significant when the expected rank k is large and/or when the input matrix is sparse. The cost of QR factorization will also reduce from $O(nk^2)$ to $O(nk^2)$.

Because of the availability of different families of classical codes in the rich literature of coding theory, many possible choices of code matrices are at hand. One of the contributions of this paper is to open up these options for use as structured sampling operators in low-rank approximations.

Because of the availability of different families of classical codes in the rich literature of coding theory, many possible choices of code matrices are at hand. One of the contributions of this paper is to open up these options for use as structured sampling operators in low-rank approximations.

Acknowledgements: This work was supported by NSF under grant NSF/CCF-1318597 (S. Ubaru and Y. Saad) and NSF/CCF-1318093 (A. Mazumdar).
References

