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Abstract—In a joint source-channel coding scheme, a single
mapping is used to perform both the tasks of data compression
and channel coding in a combined way, rather than performing
them separately. Usually for simple iid sources and channels,
separation of the tasks is information theoretically optimal.

In an adversarial joint source-channel coding scenario, instead
of a stochastic channel, an adversary introduces a set of bounded
number of errors/erasures. It has been shown recently that, even
in the simplest cases of such adversarial models, separation is
suboptimal and characterizing the fundamental limits is difficult.
In this paper, we study several properties of such adversarial joint
source-channel schemes. We show optimality of separation in
some situations, provide simple joint schemes that beat separation
in others, and give new bounds on the rate of such coding.

I. INTRODUCTION

The characterization of the fundamental limits of informa-
tion transmission over a stochastic channel, while ensuring
the reconstruction of the information, is the most celebrated
result in information theory. The requirement of the recovery
of information within certain distortion (under a suitable
distortion metric) is a natural generalization of the setting
where one requires to recover the transmitted sequence exactly
with vanishing probability of error [1]. It is known that for
a large class of stochastic source and channel models, the
separation scheme, which involves first compressing the source
to a tolerable distortion with optimal source code and then
transmitting compressed source encoded by an optimal error-
correcting channel code, does not incur any loss in terms of
the rate [2].

The problem of error free transmission over adversarial
(combinatorial) channels has received a significant amount of
attention from the coding theory community. As compared to
the stochastic setting, the fundamental limits of the rate of
the communication schemes for adversarial channels are still
unknown [3]. Similarly to the stochastic setting, in certain
applications, it is natural to study the problem of transmit-
ting source information with certain fidelity constraint over
adversarial channels. Recently, [4]–[6] has formally defined
and studied this problem. In particular, these papers study the
setting where one is interested in encoding a k-length binary
source sequence into an n-length sequence and transmitting it
over an adversarial channel that can corrupt upto δn symbols
in the transmitted sequence. The objective is to recover the
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source sequence within Dk Hamming distortion. The main
take away from the work in [4] is that contrary to the stochastic
case, the separation is not always optimal in adversarial setting.

In this paper we build on the work of [4], [5] and further
the study of adversarial joint source-channel coding (JSCC)
problem for Hamming distortion metric in the presence of
adversarial errors (bit flips). In Section III, we derive an
upper bound on the rate of an adversarial JSSC for a source
that consists of binary sequences with p ∈ (0, 0.5) fraction
of 1s. For the general source, where we have Fk2 as the
set of source sequences, we present multiple simple coding
schemes in Section IV that outperform separation scheme
for certain range of channel parameters δ. In Section V,
we explore necessary conditions on the distance distribution
of the transmitted codewords of an adversarial JSCC. These
conditions are helpful in obtaining new upper bounds on the
rate of adversarial JSCC schemes.

We then shift our focus to the setting where the adver-
sarial channel introduces erasures in a transmitted codeword
as opposed to bit-flips. The erasure setting models various
applications including distributed storage systems and video
delivery. For this setting, we consider both Hamming distortion
metric and erasure distortion metric in Section VI-A and Sec-
tion VI-B, respectively. Similarly to the case with adversarial
errors [4], we obtain upper bounds on the rate of an adversarial
joint source channel coding scheme which recovers a source
sequence within Dk distortion in the presence of at most
εn adversarial erasures. We present a replication based JSCC
scheme for this setting. We conclude the paper in Section VIII
with some comments on future work.

II. DEFINITIONS AND PRELIMINARIES

Throughout this text dH(·, ·) will denote the Hamming
distance between the argument vectors and wt(·) will denote
the Hamming weight of the argument.

A pair of mappings f : {0, 1}k → {0, 1}n and g :
{0, 1}n → {0, 1}k are called together a (n, k, d1, d2)-JSCC,
if ∀x ∈ {0, 1}k and ∀z ∈ {0, 1}n : wt(z) ≤ d2,

dH(g(f(x) + z), x) ≤ d1.

Sometime we refer to the image of f as the code.
In most of the parts of this paper we will be considering

only asymptotic regime where n→∞ and k scaling linearly



with n. Define,

R ,
k

n
; ρ ,

n

k

as the rate of transmission and bandwidth expansion respec-
tively. In the asymptotic regime we also assume d1 = Dk and
d2 = δn, D, δ ∈ [0, 1]. In short we write an (n, k,Dk, δn)-
JSCC as a (D, δ)-JSCC when the other parameters are clear
from the context.

The following two converse bounds [4] will be referenced
frequently throughout the text.

Proposition 1 (Information Theoretic Converse): For any
(n, k, d1, d2)-JSCC,

2k
d2∑
i=0

(
n

i

)
≤ 2n

d1∑
i=0

(
k

i

)
.

Asymptotic form of the bound for any (D, δ)-JSCC is

1− hB(D) ≤ ρ(1− hB(δ)).

Proposition 2 (Coding Theoretic Converse): For any
(n, k, d1, d2)-JSCC,

A(k, 2d1 + 1) ≤ A(n, 2d2 + 1),

where A(n, d) is the maximum size of an error-correcting
code of length n and minimum distance d. Suppose,

lim
n→∞ A(n, τn)

n
= R0(τ),

though it is not known whether the limit exists. Asymptoti-
cally, for any (D, δ)-JSCC,

R0(2D) ≤ ρR0(2δ).

It is known that,

RGV(τ) ≤ R0(τ) ≤ RMRRW(τ), (1)

where the MRRW II bound [7] is

RMRRW(τ) ≡ min
0<α≤1−2τ

1+ ĥ(α2)− ĥ(α2+2τα+2τ) , (2)

with ĥ(x) = hB(1/2 − 1/2
√
1− x), and the Gilbert-

Varshamov bound [8] is

RGV(τ) ≡ 1− hB(τ). (3)

A separation scheme for JSCC is a scheme where a covering
code with covering radius d1 is first used to compress k-bit
vectors and then an error correcting code with distance 2d2+
1 is used for noise protection. For any separation scheme,
asymptotically, we have,

1− hB(D) = ρR0(2δ). (4)

One of the main contribution of [4] is to show that separation
is not optimal in general.

III. OPTIMALITY OF SEPARATION

In this section we primarily focus on a very common
scenario, where, instead of considering a source that produces
all possible binary sequences, we consider p-biased source
(for p < 1

2
). This source consists of all vectors of Hamming

weight pk in Fk2 . We show that, when the source is very sparse,
separation is close to being the optimal method.

If we want a (D, δ)-JSCC for this source, then analogous
to the coding theoretic converse, we have

A(k, 2Dk+ 2, pk) ≤ A(n, 2δn+ 1), (5)

where A(n, d,w) is the maximum possible size of a constant
weight binary code with length n, distance d and weight w.
The claim follows from the fact that, for any (D, δ)-JSCC, any
two source vectors that are distance more than 2Dk apart, must
map to vectors that are more than 2δn apart. Also, note that, a
constant weight code must have only even distances between
codewords.

The main claim of this section is the following.
Theorem 3: If we have a (D, δ)-JSCC for a p-biased source,

then,

R ≤ R0(2δ)

hB(p) − phB

(
D
p

)
− (1− p)hB

(
D
1−p

) . (6)

Proof: Simple Gilbert-Varshamov argument gives [9],

A(n, d,w) ≥
(
n
w

)∑d/2
i=0

(
w
i

)(
n−w
i

) . (7)

Therefore, using (5) we must have,

nR0(2δ) ≥ k
(
hB(p)

− max
0≤α≤D

{
phB

(α
p

)
+ (1− p)hB

( α

1− p

)})
.

The term within the maximization is a concave function of α
and it is maximized for α = p(1−p). AssumingD < p(1−p),
the term will maximize at α = D. We substitute this value to
obtain the theorem.

Note that, separation achieves,

R ≥ R0(2δ)

hB(p) − hB(D)
, (8)

as there exists a covering code for pk-biased source with rate
hB(p) − hB(D). Comparing the above with (6), we can say
that separation is close to being optimal as p → 0 (as D is
dominated by p, it also goes to 0) for all δ. Also note that,
optimality of separation for p → 0 is not evident when we
use the information theoretic converse, R ≤ 1−hB(δ)

hB(p)−hB(D) , as
the numerators are dependent on δ.

In the following example, we highlight another setting
where separation is optimal.

Example: Here we assume the general source with all
possible binary sequences in Fk2 and focus on small number
of errors. Consider an (n, k, 1, 2)-JSCC. Assume, k + 1 and
n + 1 are both powers of two. For a separation scheme,



we can use a Hamming code (that is the optimal code with
covering radius 1) of length k and dimension k − log(k + 1)
as the covering code and a 2-error correcting BCH code (of
length n and dimension n − 2 log(n + 1)) as the channel
code. Hence, separation achieves 2k

k+1 ≈
2n

(n+1)2
. As 2-error

correcting BCH codes are in general optimal (quasi-perfect)
family for large n, we have from the coding theoretic converse,
2k

k+1 ≤
2n

(n+1)2
. This shows that separation is optimal in

this case. For the general case when d2 is a constant, we
may use a d2-error correcting BCH code of length n and
dimension n − d2 log(n + 1). Again, the converse result
helps us prove that all such separation schemes provide order
optimal (n, k, 1, d2)-JSCC.

IV. SCHEMES THAT BEAT SEPARATION

In this section, we present simple (D, δ)-JSCC schemes that
outperform the separation scheme.

A. Systematic code for Joint Source Channel Coding

Assume that ρ = n
k
≥ 1. Given a source sequence in Fk2 ,

we encode it using a systematic linear code that attain the
GV bound, i.e., the code with minimum distance 2∆n and the
rate R = 1

ρ
= 1 − hB(2∆). Assume that the first k bits in

a codeword constitue the systematic part. Now, given δn ≤
∆n errors in the received sequence, we can correct all these
errors leading to the Hamming distortion Dk = 0. In the case
with δn > ∆n errors, we can simply output the first k bits
(systematic part) of the received sequence as an estimate of
the original source sequence. In the worst case, these k bits
contain δn errors, leading to the Hamming distortionDk = δn
or D = ρδ.

On the other hand the separation scheme, where we use an
optimal source code with Hamming distortion Dk and a code
attaining the GV bound with minimum distance 2δn, gives us
D = h−1B

(
1− ρ(1− hB(2δ))

)
[4]. Therfore, combining both

these coding schemes, we can design a (D, δ)-JSSC with

D =

{
0, if δ ≤ 1

2
h−1B (1− 1/ρ);

min{ρδ, h−1B
(
1− ρ(1− hB(2δ))

)
}, otherwise.

Fig. 1 illustrates the tradeoff between D and δ achieved
by the JSCC scheme described above. As it is clear from the
figure, this scheme outperforms the separation scheme starting
moderate values of δ.

This naive systematic scheme can actually be improved. We
illustrate this via an example. Suppose, ρ = 20

11
. We simply

repeat 9k
11

bits twice and leave 2k
11

bits uncoded to obtain a total
of n = 20k

11
bits. As long as δn ≤ 2k

11
or δ ≤ 1

10
, the adversary

will target only uncoded bits and as a result we will have D =
ρδ. However, when δ > 1

10
, the adversary has to introduce

errors in repeated bits. In this case D = 1 − ρ(1−δ)
2

(this is
the average number of remaining errors, see the randomized
decoder below for optimum adversary strategy and decoding).
In particular, for ρ ≥ 2 we can use the following repetition
code and the randomized decoding.
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Fig. 1. Performance of systematic code approach at ρ = 1.2.

B. Repetition with randomized decoder

For an integer valued ρ, we can utilize ρ-repetition as trans-
mission scheme. Here, we present such a repetition scheme
with a randomized decoder that allows us to obtain a JSCC
with D = δ. For ρ repetition scheme, we need to transmit k
blocks from the set {00 . . . 0, 11 . . . 1} ∈ Fρ2 . Given the received
vector y = (y1,y2, . . . ,yk) ∈ Fρk2 , we employ a randomized
decoder which maps the ρ-bit long block yi to message bit
xi such that

Pr(xi = 0) =
ρ− wt(yi)

ρ
.

Assuming that there are `i errors in the ith received block,
the decoded makes an error in decoding the ith message bit
with probability `i

ρ
. Therefore, the randomized decoder leads

to the expected Hamming distortion of
k∑
i=1

`i

ρ
≤ δn
ρ

= δk.

We can further argue that with high probability the randomized
decoder leads to the Hamming distortion of at most ∼ δ (by
Chernoff bound). Recently, Young and Polyanskiy (personal
communication) have shown that for 1

4
≤ δ ≤ 1

2
, a linear

encoding scheme can not achieve D < δ. This implies that
the repetition scheme with the randomized decoder described
above is optimal for the range 1

4
≤ δ ≤ 1

2
.

C. Project and transmit scheme

For ρ = n
k
≤ 1, as a JSSC we can transmit any n =

ρk coordinates of a k-length source sequence. This operation
of projecting source sequence to ρk coordinates leads to at
most (1 − ρ)k Hamming distortion during the reconstruction
process. Note that we receive at least (1−δ)ρk symbols of the
source sequence that remain intact even after the introduction
of at most δn = δρk adversarial errors. This simple scheme
ensures that the source sequence is recovered with at most
Dk = (1− ρ)k+ δρk Hamming distortion.

Using the separation scheme, we get D ≤ h−1B (1 −
ρ(1− hB(2δ))). This is worse than what we obtain from the
projection scheme when ρ is close to 1 (and δ is large enough).



V. GEOMETRY OF (D, δ)-JSCC

In this section we state two necessary geometric conditions
on a codebook associated with a (D, δ)-JSSC. Given a code
C ⊆ Fk2 , the distance distribution of C is defined as follows.
For i = 0, 1, 2, . . . , n,

Ai ,
1

|C|
|{(c1, c2) ∈ C2 : dH(c1, c2) = i}|. (9)

As can be seen, A0 = 1. For a code C to be able to be the
image of a (D, δ)-JSCC with a suitable encoding map, it must
satisfy the following conditions.

Proposition 4: For any (k, n,D, δ)-JSCC C, we must have

2δn∑
w=0

Aw ≤
2Dk∑
i=0

(
k

i

)
, (10)

∑2δn
i=0 Ai

( i⌈
i/2

⌉)( n−i

δn−
⌈
i/2

⌉)(
n
δn

) ≤
Dk∑
j=0

(
k

j

)
. (11)

Proof (sketch): Let f : Fk2 → Fn2 be an encoding map for
(D, δ)-JSCC which maps Fk2 to the sequences in C. Now, the
proof of (10) follows from the fact that two source sequences
that are more than 2Dk Hamming distance apart can not be
mapped by f to the codewords that have Hamming distance
at most 2δn between them.

For (11), we note that the number of codewords from C

within any Hamming ball in Fn2 of radius δn shoul be at most
size of an Hamming ball in Fk2 of radius Dk. Otherwise the
optimal decoder can not guarantee the distortion of at most
Dk. We next compute the expected number of codewords in
a Hamming ball of radius δn in Fn2 that is at δn Hamming
distance from a codeword of the underlying JSSC. It turns out
to be the following quantity.

N(C, δ) =

∑
c∈C
∑

x∈S(c,δn)
∑

c̃∈C 1{c̃∈B(x,δn)}

|C|
(
n
δn

) , (12)

where S(c, δn) denotes the Hamming sphere of radius δn
which is centered at c. Note that (details omitted),

N(C, δ) =

∑2δn
i=0 Ai

∑min{δn,i}

a=
⌈
i/2

⌉ ( i
a

)(
n−i
δn−a

)
(
n
δn

) . (13)

Hence, there is a Hamming ball in Fn2 of radius δn (centered
at distance δn from a codeword in C) such that it contains
N(C, δ) codewords in C. Now, (11) follows from bounding
this quantity by

∑Dk
j=0

(
k
j

)
.

Remark 1: It turns out that (10), if used in the Delsarte
linear programming (LP) bounds of codes [10], leads to the
coding converse (details omitted). By analyzing the stronger
inequality (11) and using the LP bounds, we stand to get
improvement over the coding theoretic converse.

VI. JSCC FOR ADVERSARIAL ERASURES

In the rest of this paper, we consider the setting with
adversarial erasures as opposed to errors.

A. JSCC for Hamming distortion and adversarial erasures

Our objective is to devise a joint source-channel coding
scheme such that source sequences can reconstructed within
a certain Hamming distortion in the presence of adversarial
erasures. In particular, an encoding map f : Fk2 → Fn2 and an
associated decoding map g : {F2 ∪ {?}}n → Fk2 constitutes a
(D, ε)-joint source channel code against erasures (JSSCE) if,
for every x ∈ Fk2 , we have,

dH
(
x, g(f(x) ∗ e)

)
≤ Dk, ∀e ∈ {1, ?}n s.t. wE(e) ≤ εn.

Here, ? denotes an erasure and the operation ∗ between
two vectors is an elementwise operation which is defined as
follows. For a ∈ F2, we have a ∗ ? = ? and a ∗ 1 = a.
Moreover, wE(e) counts the number of coordinates in the
vector e that have ? as their value.

1) Converse results for JSCCE with Hamming distortion:
Here, we employ the ideas similar to those used in [4] to
obtain the information theoretic and coding theoretic converse
results for the underlying setting with adversarial erasures and
Hamming distortion metric.

First, we describe an optimal decoder for a given encoding
map f : Fk2 → Fn2 in the setting with Hamming distortion and
adversarial erasures. Given the encoding map f and a received
sequence z ∈ {F2 ∪ {?}}n, we define the set M(f, z) as the
set of source sequences mapped to those codewords, by the
encoding function f, that agree with the received sequence z.

M(f, z) = {x : f(x)
?
= z} ⊆ Fk2 . (14)

Here, f(x) ?
= z denotes that f(x) and z agree on the unerased

coordinates. Next, a decoding map g : {F2 ∪ {?}}n → Fk2 is
defined as follows.

g(z) = argminy∈Fk
2

max
x∈M(f,z)

dH(x,y).

Given this optimal decoder, in order to show information
theoretic converse, we argue that there exists a sequence z with
at most εn erasures which agrees on the unerased coordinates
with the codewords associated with at least 2k/2n(1−ε) source
sequences. Therefore, for the optimal decoder g to work, size
of a Hamming ball of radius Dk in Fk2 , i.e., 2khB(D), must be
at least 2k

2n(1−ε) . Hence, for a (D, ε)-JSCCE with Hamming
distortion, we have

k

n
≤ 1− ε

1− hB(D)
. (15)

For coding theoretic converse, we note that the encoding
function f : Fk2 → Fn2 of a (D, δ)-JSSC must map any two
source sequences that at least 2Dk+1 Hamming distance apart
in Fk2 to two codewords that are at least εn + 1 Hamming
distance apart in Fn2 . Thus,

A(k, 2Dk+ 1) ≤ A(n, εn+ 1), (16)

which in turn implies,

k

n
≤ RMRRW(ε)

1− hB(2D)
. (17)



2) Repetition scheme for JSSCE with Hamming distortion:
Consider a ρ-repetition scheme as a JSSCE, where each bit of
the source sequence is repeated ρ times. Therefore, the length
of the codewords n = ρk. For this setting, we incur distortion
in a bit of the source sequence only if adversary erases all ρ
copies of the bit in the codeword. Thus, for the ρ-repetition
scheme we have Dk ≤ nε

ρ
= ρkε

ρ
= εk. Compare this

with the setting with adversarial errors; where the ρ-repetition
scheme gives us [4] D ≤ 2ρδ

ρ+1 . Thus in the case with errors,
increasing the repetition factor ρ leads to higher distortion. On
the other hand, the incurred distortion is independent of the
repetition factor ρ in the setting with erasures.

Remark 2: Note that, the simple randomized decoding
will result in D = ε

2
with high probability for any repetition

scheme.

B. JSSC for erasure distortion and adversarial erasures
We now study the setting where our goal is to reconstruct the

source squence up to Dk erasure distortion from the received
sequence with at most εn erasures. Note that under erasure
distortion metric, we have d(0, 0) = d(1, 1) = 0; d(1, ?) =
d(0, ?) = 1; and d(0, 1) = d(1, 0) =∞.

1) Converse results for JSCCE with erasure distortion: The
following result presents converse for the underlying setting.

Theorem 5: For a (D, ε)-JSSCE with erasure distortion
metric, we must have

k

n
≤ 1− ε

1−D
. (18)

and
k

n
≤ RMRRW(ε)

1− hB(D)
. (19)

Proof: Again, we define an optimal decoder for the
setting. Given an encoding map f : Fk2 → Fn2 and a received
sequence z ∈ {F2 ∪ {?}}n, let M(f, z) be the set as defined in
(14). The optimal decoder g : {F2 ∪ {?}}n → {F2 ∪ {?}}k for
the current setting is defined as follows.

g(z) = argminy∈{F2∪{?}}k {wE(y) : y
?
= m ∀ m ∈M(f, z)}.

For information theoretic converse, we know that for an
encoding map f, there exists a received sequence z with at
most εn erasures such that |M(f, z)| ≥ 2k

2n(1−ε) . Therefore,
given z as the received sequence, the optimal decoder g
will output a sequence with at most Dk erasures only if
2k

2n(1−ε) ≤ |M(f, z)| ≤ 2Dk.
Eq. (19) follows from the arguments similar to those em-

ployed before.
Remark 3 (Optimal scheme for ρ ≤ 1): For ρ ≤ 1, the

project and transmit scheme presented in Sec. IV-C can be
used to achieve the erasure distortion D = 1 − ρ + ρε in the
presence of εn adversarial erasures. Note that this scheme is
optimal as it attains the information theoretic bound in (18).

Remark 4: The repetition scheme as described in Sec-
tion VI-A2 also works for this setting ensuring that D = ε.

Fig. 2 highlights the gap between the performances of the
speration scheme and the project and transmit scheme as
(D, ε)-JSCCE with erasure distortion.
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Fig. 2. Performance of the project and transmit scheme (coinciding with
information theoretic converse) for a (D, ε)-JSCCE with erasure distortion at
ρ = 0.9.

VII. CONCLUSION: JSCC WITH DISTANCE

It is also interesting to analyze a (D, δ)-JSCC code C

whose minimum distance is τn. In practice, this type of code
is useful, as they perform perfect error-correction up to a
limit and then up to another limit decodes within a bounded
distortion. For these codes, the distance distribution follows,
A1 = A2 = · · · = Aτn−1 = 0 as well as satisfies (10). It is
possible to obtain LP bounds for these codes with the extra
constraint of (10).
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