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Abstract—In a locally recoverable or repairable code, any
symbol of a codeword can be recovered by reading only a
small (constant) number of other symbols. The notion of local
recoverability is important in the area of distributed storage
where a most frequent error-event is a single storage node
failure (erasure). A common objective is to repair the node by
downloading data from as few other storage node as possible. In
this paper, we bound the minimum distance of a code in terms
of of its length, size and locality. Unlike previous bounds, our
bound follows from a significantly simple analysis and depends
on the size of the alphabet being used.

I. INTRODUCTION

The increased demand of cloud computing and storage
services in current times has led to a corresponding surge
in the study and deployment of erasure-correcting codes, or
simply erasure codes, for distributed storage systems. In the
information and coding theory community, this has led to the
research of some new aspects of codes particularly tailored to
the application to storage systems. The topic of interest of this
paper is the locality of repair of erasure codes.

It is well known that an erasure code with length n,
dimension k and minimum distance d, or an (n, k, d) code,
can recover from any set of d − 1 erasures. In addition,
the code is said to have locality r if any single erasure can
be recovered from some set of r symbols of the codeword.
From an engineering perspective, when an (n, k, d) code is
used to store information in n storage nodes, the parameter d
represents the worst-case (node) failure scenario from which
the storage system can recover. The parameter r, on the other
hand, represents the efficiency of recovery from a (relatively)
more commonly occurring hurdle - a single node failure. It
is therefore desirable to have a large value of d and a small
value of r. Much literature in classical coding theory has been
devoted to understanding the largest possible value of d - the
minimum distance - for a fixed (n, k); one of the well-known
result from this body [10] of work is the Singleton bound,
and code constructions that achieve this bound (such as Reed-
Solomon codes). The study of minimizing the locality, r, was
pioneered recently in [1] and furthered in [2], [3], [7]–[9],
[11]. The key discovery of [1], [7] is that, for any (n, k, d)
code with and locality r, the following bound is satisfied:

d ≤ n− k − dk/re+ 2. (1)

The above bound is a generalization of the Singleton bound to
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Fig. 1. A depiction of our bound through the trade-off between the rate,
k/n and relative distance, d/n, for binary codes (q=2) for large values of n,
with locality r = 2. The curves plotted are upper bounds on the achievable
rates; the plot clearly demonstrates that our upper bound is better than all the
previously known bounds on the rate, for a given relative distance.

include the locality of the codeword, r; when r = k, the above
bound collapses to the classical Singleton bound. In addition,
through an invocation of the multicast capacity of wireline
networks via random network coding, the reference [7] showed
that the above bound is indeed tight for a sufficiently large field
size. Intuitively speaking, the above bound implies that there
is a cost to locality; the smaller the locality, r, the smaller
the minimum-distance d. Code constructions that achieve the
above bound based on Reed-Solomon codes, among other
techniques, have been recently discovered in [3], [4], [7], [9],
[12]. Missing from these works is a formal study of the impact
of an important parameter of the code - the size of the alphabet
(field) of the code. Codes over small alphabets are the central
subject of classical coding theory, and are of interest in the
application of storage because of their implementation ease.
We remove the restriction of the large alphabet size from the
study of locality of codeword symbols. Indeed, the impact of
the alphabet size on the locality of a codeword forms the object
of focus of our work.

A. Our Contribution:

The main contribution of this paper is a simple upper bound
on the minimum distance on the code that is dependent on



the size of the alphabet. While the technical statement of our
bound is discussed later (in Theorem 1), it is worth noting here
that our bound, which is applicable for any feasible alphabet-
size and any feasible (n, k), is least as good as the bound of
[1], [7] for all parameters. Recall that even in the absence of
locality constraints, the optimum minimum distance of a code
over an alphabet of a fixed size remains an open problem in
general. Our main result uses this quantity - the largest possible
minimum distance of an (n, k) code over a given alphabet
size - albeit unknown, as a parameter to characterize a bound
under locality constraints. As a consequence, our bound is
stringent than the classical (locality-unaware) bounds such as
the Mcliece-Rodemich-Rumsey-Welch (MRRW) bounds since
they form a special case of our bound (unrestricted locality).
The role of the alphabet size on the rate of the code is
highlighted in the plot of Fig. 1, where we compare our bounds
with existing bounds. Finally, since certain code constructions
in previous works are based on multicast codes over networks
[7], our result can be interpreted as the demonstration of the
impact of alphabet size on the rates of multicast network codes
for certain networks.

Notation: Sets are denoted by calligraphic letters and vec-
tors are denoted by bold font. Consider an element X ∈ An,
where A is an arbitrary finite set. The notation Xi ∈ A
denotes the ith co-ordinate of the tuple X. For any set
R ⊆ {1, 2, . . . , n}, the notation XR ∈ A|R| denotes the
projection of X ∈ An on to the co-ordinates corresponding to
R. For X,Y ∈ An, the Hamming distance ∆H(X,Y) is the
cardinality of the set {m : Xm 6= Ym}.

II. SYSTEM MODEL: LOCALLY RECOVERABLE CODES

A code C with length n over alphabet Q consists of |C|
codewords denoted as C = {Xn(1),Xn(2), . . . ,Xn(|C|)},
where Xn(i) ∈ Qn,∀i. The dimension of the code, denoted by
k is defined as k

4
= log |C|

log |Q| , and the rate of the code denoted as

R is defined as R
4
= k
n . An (n, k, d)-code over Q is an n length

code C with dimension k such that the minimum distance is
d, i.e., with

d = min
Xn,Yn∈C,Xn 6=Yn

∆H (Xn,Yn) .

We refer to δ
4
= d
n as the relative distance of the code.

Definition 1: An (n, k, d)-code is said to be r-locally re-
coverable if for every i such that 1 ≤ i ≤ n, there exists a set
Ri ⊂ {1, 2, . . . , n} \ {i} with |Ri| = r such that for any two
codewords X,Y satisfying Xi 6= Yi, we have XRi

6= YRi
.

Informally speaking, this means that an erasure of the ith
coordinate of the codeword can be recovered by accessing the
coordinates associated with Ri. Hence any erased symbol can
be recovered by probing at most r other coordinates.

III. BOUND ON MINIMUM DISTANCE FOR LOCAL
RECOVERY

Given parameters n, d, q, let

k
(q)
opt (n, d) = max

log |C|
log q

,

where the maximization is over all possible n-length code-
books C with minimum distance d, over some alphabet Q
where |Q| = q. Informally speaking, k(q)opt (n, d) is the largest
possible dimension of an n-length code, for a given alphabet
size q and a given minimum distance d. The determination of
k
(q)
opt is a well known classical open problem in coding theory.

It is also well known that kopt satisfies the Singleton bound:

k
(q)
opt (n, d) ≤ n− d+ 1,∀q ∈ Z+.

References [1], [7], generalized the above bound under locality
constraints as Def. 1. However, it is well known that the
Singleton bound is not tight in general, especially for small
values of q. The goal of this paper is to derive a bound on the
dimension of an r-locally recoverable code in terms of k(q)opt.
Our main result is the following.

Theorem 1: For any (n, k, d) code over Q that is r-locally
recoverable

k ≤ min
t∈Z+

[
tr + k

(q)
opt(n− t(r + 1), d)

]
, (2)

where q = |Q|.
Our bound applies to general (including non-linear) codes, as
opposed to only linear codes. Note that, the minimizing value
of t in (2), t∗, must satisfy,

t∗ ≤ min
{⌈ n

r + 1

⌉
,
⌈k
r

⌉}
.

This is true because, 1) for t ≥
⌈

n
r+1

⌉
, the objective function

of the optimization of (2) becomes linearly growing with t; 2)
for t ≥

⌈
k
r

⌉
, the right hand side of (2) is greater than k.

The bound of [1], [7], i.e. (1), is weaker than the bound
of Theorem 1. To prove this claim, let us show that, if a
(n, k, d, r)-tuple does not satisfy (1), then it will not satisfy
(2).

Let, (n, k, d, r)-tuple does not satisfy (1), i.e.,

d > n− k − dk/re+ 2.

This sets the following chain of implications.

min
t∈Z+

[
tr + k

(q)
opt(n− t(r + 1), d)

]
≤ b(k − 1)/rcr + max{n− b(k − 1)/rc(r + 1)− d+ 1, 0}
= max{n− b(k − 1)/rc − d+ 1, b(k − 1)/rcr}
< max{n− b(k − 1)/rc − n+ k + dk/re − 2 + 1, k}
= max{−b(k − 1)/rc+ k + dk/re − 1, k}
= k,

which means (2) is not satisfied by this tuple as well.
Notice that the above chain of implications came from

plugging in the Singleton bound on k
(q)
opt . We shall apply

bounds that are dependent on q and stronger than the Singleton
bound on k(q)opt to effectively obtain tighter bounds on (1) later
in this paper. We shall first present an overview of the proof



of Theorem 1. For purposes of the proof, for a given n length
code C we define the function H(.) as follows

H(I) =
log |{XI : X ∈ C}|

log |Q|
,

for any set I ⊆ {1, 2, . . . , n}.
Remark 1: In the language used in [7], H(I) would

denote the “entropy” associated with XI . Here, the above
definition is appropriate since our modeling is adversarial, i.e.,
we do not presuppose any distribution on the messages or the
codebook (see, [6] where such assumptions have been made).
However, the behavior of the function H(.) is similar to the
entropy function; for instance it satisfies submodularity, i.e.,
H(I1) +H(I2) ≥ H(I1 ∪ I2) +H(I1 ∩ I2)

Theorem 1 follows from Lemma 1 and Lemma 2 stated
next.

Lemma 1: Consider an (n, k, d)-code over alphabet Q that
is r-locally recoverable. Then, ∀ 1 ≤ t ≤ k/r, t ∈ Z ∃ I ⊆
{1, 2, . . . , n}, |I| = t(r + 1) such that H(I) ≤ tr.

Lemma 2: Consider an (n, k, d)-code over Q where there
exists a set I ∈ {1, 2, . . . , n} such that H(I) ≤ m. Then there
exists a (n− |I|, (k −m)+, d) code over Q.

Proof of Lemma 1: Consider an r-locally recoverable
(n, k, d)-code. For any i ∈ {1, 2, . . . , n}, let Ri denote the
corresponding repair-set; by definition |Ri| = r. The key
idea is to construct a set I having the desired properties.
Our construction is essentially similar to [7]; we describe our
construction here for completeness. We choose

I =

(
t⋃
l=1

{al} ∪ Ral ∪ Sl

)
where a1, a2, . . . , at ∈ {1, 2, . . . , n} and Sl ⊂
{1, 2, . . . , n}, l = 1, 2, . . . , t are chosen as follows:

Begin Choose a1 arbitrarily from {1, 2, . . . , n}. Choose S1 to
be the null set.

Loop For m = 2 to m = t

Step 1: Choose am so that

am /∈
m−1⋃
l=1

{al} ∪ Ral ∪ Sl

Step 2: Choose Sm to be set of m(r + 1) −∣∣∣{am} ∪ Ram ∪⋃m−1l=1 {al} ∪ Ral ∪ Sl
∣∣∣ elements,

arbitrarily from {1, 2, . . . , n} − {am} ∪ Ram ∪⋃m
l=1{al} ∪ Ral ∪ Sl.

End
This completes the construction. Note that I constructed above
has cardinality t(r + 1). It remains to show that H(I) ≤ tr.
We now intend to show that H(I) = H(I −{a1, a2, . . . , at})
from which the desired bound would follow because of

H(I) = H(I − {a1, a2, . . . , at}) ≤ t(r + 1)− t = tr,

where we have used the fact that H(A) ≤ |A| for any set A.

We therefore intend to show a one-to-one mapping between
{XI−{a1,a2,...,at}} and {XI}. In other words, suppose that
XI 6= X̂I , we need to prove that XI−{a1,a2,...,at} 6=
X̂I−{a1,a2,...,at}. Equivalently, suppose that Xa1,a2,...,at 6=
X̂a1,a2,...,at , we need to prove that XI−{a1,a2,...,at} 6=
X̂I−{a1,a2,...,at}. Suppose a contradiction, i.e., suppose that
∃,X, X̂ ∈ C such that

X{a1,a2,...,at} 6= X̂{a1,a2,...,at}

XI−{a1,a2,...,at} = X̂I−{a1,a2,...,at}

Define B = {j : Xj 6= X̂j} ⊆ {a1, a2, . . . at}. Because of
the definition of locality and because Rai ∈ I, the above
conditions imply that

Ri ∩ B 6= φ, ∀i ∈ B (3)

In other words, the repair set associated with any element, i,
in B should have at least one element in B, because Xj = X̂j

for all i 6= j. We will show that this is a contradiction to
our construction. In particular, we will throw away elements
from B one at a time to obtain, from (3), a relation of the
form j ∩ Rj 6= φ for some j ∈ B, which is a contradiction.
To keep the notation clean, we will show the proof for B =
{a1, a2, . . . , am}, where m = |B|. Our idea generalizes for
arbitrary B. By construction (Step 1), note that am /∈ Rai , i =
1, 2, . . . ,m− 1. Therefore, am is not a member of the repair
sets of any of the elements of B, and (3) implies that

Ri ∩ {a1, a2 . . . , am−1} 6= φ, ∀i ∈ {a1, a2, . . . , am−1}

Similarly, note that am−1 /∈ Rai , i = 1, 2, . . . ,m − 2 and
Therefore, am−1 is not a member of the repair sets of any of
the elements of B − {am}. So we get,

Ri ∩ {a1, a2 . . . , am−2} 6= φ, ∀i ∈ {a1, a2, . . . , am−2}

Repeating the above procedure m− 1 times, we get

Ra1 ∩ {a1} 6= φ,

which is a contradiction.
Proof of Lemma 2: Without loss of generality, let us assume

that I = {1, 2, . . . , |I|}. Consider any element Z of the S =
{XI : X ∈ C}. Now, notice that the set of all elements of C
which have Z as a “prefix” can be used to construct a codebook
C(Z) of length (n− |I|). In particular denote

C̃(Z) = {X{|I|+1,|I|+2,...,n} : XI = Z}

In addition, we can deduce that the codebook C̃(Z), has
minimum distance d. To see this, consider U,V ∈ C̃(Z) and
note that

∆H(U,V) = ∆H((Z,U), (Z,V)) ≥ d (4)

where, above we have used the fact that, by definition of
C̃(Z), the tuples (Z,U) and (Z,V) are elements of C and
therefore have a Hamming distance larger than or equal to
d. Now, all we need to show is that there exists at least
one Ẑ ∈ S such that the dimension of C̃(Ẑ) is (at least)



as large as k − m. This can be shown using an elementary
probabilistic counting argument. Specifically, by assuming that
Z is uniformly distributed over S, the average value of |C̃(Z)|
can be bounded as follows.

|C| = |Q|k =
∑
Z∈S

|C̃(Z)|

= |S|E
[
C̃(Z)

]
⇒ E

[
C̃(Z)

]
=
|Qk|
|S|

≥ |Q|k

|Q|m
= |Q|k−m

where, above we have used the premise of the lemma, namely
|S| = |Q|H(I) ≤ |Q|m. Therefore, there is at least one Ẑ ∈ S
such that C̃(Ẑ) ≥ |Q|k−m thereby resulting in a (n− |I|, k−
m, d) codebook over Q. This completes the proof.

IV. APPLICATIONS OF THEOREM 1 AND DISCUSSION

In this section, we apply classical bounds for kopt to The-
orem 1. To enable a clean analysis, we look at the regime
where n → ∞. In particular we set R = k/n, δ = d/n
and obtain bounds on the trade-off between (R, δ) as r is
fixed and n → ∞. We first apply the Plotkin bound on kopt
and obtain an analytical characterization of the (R, δ) trade-
off with dependence on the alphabet-size, q; in particular, we
demonstrate a distance-expansion penalty as a result of the
limit on alphabet size. Then, we use the MRRW bound for
kopt to numerically obtain the plot of Fig. 1.

To begin, observe that dividing the Singleton bound n and
letting n→∞, it can be written as

R ≤ 1− δ + o(1)

Similarly, the bound of [1], [7] can be written as:

δ ≤ 1− rR

r + 1
+ o(1).

⇒ R ≤ r

r + 1
(1− δ) + o(1) (5)

The plot of the above bound is placed in Fig. 1 for r = 2.
The cost of the locality limit above therefore is the factor of
r/(r + 1) over the Singleton bound. We are now ready to
analyze the Plotkin Bound, adapted to Theorem 1.

Application of Plotkin Bound - Distance Expansion Penalty

Let us choose t = 1
r+1 (n− d

1−1/q ) in Theorem 1. We have,
for any (n, k, d)-code that is r-locally recoverable,

k ≤ r

r + 1

(
n− d

1− 1/q

)
+ k

(q)
opt

( d

1− 1/q
, d
)

It is known, from the Plotkin bound, k(q)opt

(
d

1−1/q , d
)
≤

logq
2qd

1−1/q . See, for example, Sec. 2§2 of MacWilliams and

Sloane [5], for a proof of this result for q = 2, which can be
easily extended for larger alphabets. Hence,

k ≤ r

r + 1

(
n− d

1− 1/q

)
+ logq

2qd

1− 1/q
. (6)

Generally, this bound is better than (1). Notice that dividing
the above by n and taking n→∞, we have

R =
k

n
≤ r

r + 1

(
1− δ

1− 1/q

)
+ o(1),

whereas, observing the above, it can be noted that the effect of
restricting q leads to a distance-expansion penalty of 1

1−1/q ,
since the above bound is tantamount to shooting for a distance
of δ/(1− 1/q) w.r.t. (5).

Beyond the Plotkin bound

Recall that the MRRW bound is the tightest known bound
for the rate-distance tradeoff in absence of locality constraints.
We briefly describe an application of this bound for Theorem
1, i.e., when the locality is restricted to be equal to a number r;
it is this bound that is plotted in Fig. 1. We restrict our attention
to binary codes (q = 2) and therefore the dependence on q is
dropped in the notation.

Define Ropt(δ)
4
= limn→∞

kopt(n,δn)
n Dividing the bound of

Theorem 1 by n we can get, as n→∞,

R ≤ min
0≤x≤r/(r+1)

x+ (1− x(1 + 1/r))Ropt

(
δ

1− x(1 + 1/r)

)
where x = tr/n. It is instructive to observe that, setting
x = 0 above yields classical (locality-unaware) bounds.
Setting x = R above and writing out the Singleton bound
for Ropt yields the bound of (5). Therefore the above bound
is superior to all the classical (locality-unaware) bounds on
R(δ) and the bound of (5) since these are special cases. Using
the MRRW bound R(y) ≤ H2(0.5 −

√
y(1− y)) + o(1)

(where H2(.) represents the binary entropy function), and
numerically solving the optimization problem above (in a
brute-force manner) yields our bounds for the rate-distance
trade-offs for any given r. Deriving analytical insights for the
optimization problem by application of bounds beyond the
Plotkin bound is an area of future work.

A. Discussion

In this paper, we have provided upper bounds on on the
rate achievable for a fixed locality, distance, and alphabet
size. Constructions of locally repairable codes is an interesting
open question especially relevant to practice. To understand
the related issues (briefly), consider the special case of binary
codes (q = 2) where, in absence of locality constraints, the
best known simple achievable scheme comes via the Gilbert-
Varshamov (GV) bound: R ≥ 1 − H2(δ). A very simple
construction for locally repairable codes is constructed by
taking the parity check matrix of a code that achieves the GV
bound and add d n

r+1e rows to it; each new row has r + 1
nonzero values and the support of all the (new) rows are



disjoint. It can be readily verified that this code has a locality
of r. Note that this new code has rate:

R ≥ 1−H2(δ)− 1

r + 1
=

r

r + 1
−H2(δ).

For δ = 0, the above clearly meets the outer bound of (1).
However, the above achievable scheme does not meet our
bound for larger values of δ. For example, in the regime of
Fig. 1, i.e., r = 2, the above bound implies that R = 0 for
δ ≥ H−12 (2/3) ≈ 0.18. Clearly, this is not tight with our
bound, where R > 0 as long as δ < 0.5. Thus, perhaps, the
most interesting open question is largest possible (relative)
distance of a code with non-zero rate, for a fixed locality and
alphabet size.

One of the most promising avenue to pursue to construct a
locally repairable code is to consider an LDPC or low density
parity check matrix code. In an LDPC code the rows of the
parity check matrix have small (constant) number of non zero
values. Clearly, the locality of a linear code is upper bounded
by the maximum number of nonzero values in any row of the
parity check matrix of the code less one. Hence, if one can
construct an LDPC code with a specified rate-distance trade-
off, that would be a code with small locality value.
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