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ABSTRACT 

Many radar and communications applications require 

detection and estimation of signal information across an 

extremely wide radio frequency (RF) bandwidth.  In 

practice, however, direct digitization of this broadband RF 

environment is problematic.  Physical limitations in analog-

to-digital converter (ADC) technology restrict the total 

bandwidth that can be digitized, as well as the ability to 

digitize high RF signals directly.  This paper describes a 

novel “analog-to-information” receiver, motivated by recent 

developments in Compressed Sensing (CS), which 

overcomes both of these challenges in certain settings.  The 

proposed receiver performs frequency modulated pulsed 

sampling at sub-Nyquist/Shannon rates to compress a 

broadband RF environment into an analog interpolation 

filter.  The RF sample clock modulation induces a Nyquist-

zone dependent frequency modulation on the received 

signals, allowing separation and recovery of the signal 

information from a sparse broadband RF environment. 

 

Index Terms— Compressive sensing, microwave 

receivers, analog-digital conversion. 

 

1. INTRODUCTION 

With continued advances in digital signal processing (DSP) 

technology, the analog-to-digital converter (ADC) is the 

limiting factor in a number of applications, including some 

radar and communications signal applications that require 

information processing across extremely wide RF 

bandwidths.  ADCs are constrained both in digital 

bandwidth (i.e., sample rate) [1] and in analog bandwidth 

(i.e., the ability to directly digitize high RF bands) [2].  A 

recent concept in the signal processing literature is to 

sample the environment based on the information rate rather 

than the bandwidth.  When the signal environment is 

relatively sparse, the reduction in sample rate may be very 

large.  It is shown in [3], for example, that Dirac sequences 

may be sampled at a finite rate of innovation (FRI) – even 

with extra sampling to give robustness against noise, this is 

still far less than the Nyquist/Shannon rate for ultra 

wideband impulse-like signals.  Although these initial 

results apply to a limited class of signals, recent results in 

compressed sensing (CS) have shown more generally that 

the information from a signal can be captured with far fewer 

measurements than the traditional Nyquist/Shannon criteria, 

as long as the signal has a sparse (or nearly sparse) 

representation in some basis or frame [4], [5].  One of the 

more surprising aspects of CS (also called compressive 

sampling), is that the prescribed measurements do not 

require a priori signal knowledge beyond the basic sparsity 

or compressibility assumption.  Thus it is possible, at least 

in principle, to design a universal CS measurement system 

that can be used to encode a wide range of signal types.  The 

idea of sampling based on information rate, rather than the 

Shannon bandwidth criteria, suggests a new approach 

denoted analog-to-information (A-to-I) as an alternative to 

conventional ADCs or digital receivers [6], [7]. 

The applicability of CS theory to practical RF receivers 

has been limited to date.  Original CS theory described the 

recovery of sparse (and perhaps very high-dimensional) 

vectors from a set of observations in the form of projections 

of a static signal onto random basis vectors.  This model is 

ill-suited to RF applications for several reasons.  First, 

because of the time-varying nature of RF signals, the 

assumption of a persistent static signal is not valid.  Second, 

the discrete nature of this model implicitly assumes that the 

signal has already been sampled, which leads back to the 

original problem of the ADC limitations.  Nonetheless, 

some promising approaches for practical receivers have 

been proposed, including discrete-time random filters [8], 

[9], random sampling [10], and random demodulation [11]-

[13].  Note that A-to-I architectures based on either discrete 

time random filtering or random demodulation still require 

Nyquist-rate components relative to the maximum analog 

frequency at the receiver front-end, thus limiting the 

applicability of these approaches for direct processing of 

high RF signals.  On the other hand, A-to-I approaches 

based on non-uniform sampling are feasible for direct RF 

implementation without the need for Nyquist-rate 

components.  In this paper we describe a novel approach 

that uses structured non-uniform sampling, rather than 

random sampling, to implement a direct RF A-to-I receiver 

that is effective at recovering signals that have a sparse 

frequency-domain representation [14]. Among the benefits 

of the proposed receiver is its greatly simplified signal 

recovery compared to random sampling. 

 



2. COMPRESSIVE SENSING 

Consider the problem of recovering unknown, real, length N 

vectors that are sparse in some specified basis or dictionary.  

Let x be such a vector, and assume it is K-sparse, meaning 

that it can be expressed as a linear combination of K 

elements of the basis set {i}; for example,  


k
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1
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Recovery of x is, of course, possible using traditional 

methods – for example, by sampling each entry of x.  The 

problem with this approach is that sampling at such a rate 

could be physically impossible, and even if it were possible 

we would expend quite a bit of energy encoding bits that 

will eventually be discarded in the final representation.  The 

question of whether there is a way to “just measure directly 

the part that won’t end up being thrown away” was posed 

and investigated in [5].  The answer is yes, and compressive 

sensing describes a collection of methods by which x can be 

recovered using a minimal number of measurements.   

If the correct basis elements were known prior to 

sampling, one could simply observe the K relevant entries of 

the signal in the representation {i}. But, the lack of prior 

signal knowledge makes this an impossible task.  Instead, 

the CS approach prescribes collecting samples that are 

projections of the unknown signal onto elements from a 

second basis set {i} that is incoherent with {i}.  By 

incoherent, we mean that a sparse representation of any 

element of the basis set {i} does not exist using the basis 

vectors {i} and visa-versa [4], [5].  A collection of such 

observations can be described by the linear model y = x, 

where y is a length M vector and K < M << N.   

One of the significant results of CS theory is that 

incoherent projections can be obtained without prior 

knowledge of the signal – in particular, random vectors will 

be incoherent with any fixed basis with high probability.  

Reconstruction of the unknown signal does require 

knowledge of the basis in which the signal is sparse, and can 

be accomplished by solving an l1 minimization problem, 

finding the estimate for x in the underdetermined set of 

linear equations: 
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On average, CS succeeds in recovering K sparse vectors 

when the number of observations greater than a small 

constant times K log(N) [4], [5]. 

Since CS involves discrete-time observations, one of 

the goals of practical A-to-I receivers is to extend and apply 

discrete time CS concepts to an analog continuous time 

signal environment.  The discrete-time random filter 

approach proposed in [8] can be recast in the CS framework, 

where the effective acquisition matrix has a Toeplitz 

structure.  Theoretical guarantees for CS using such 

constructs were first established in [9].  A random arithmetic 

sampling progression is investigated in [10], where 

information recovery for locally Fourier sparse signals is 

performed via the sparsogram – a fast iterative greedy 

pursuit algorithm that includes computing a non-uniformly 

sampled fast Fourier transform algorithm on the sampled 

residual.  Random demodulation methods were investigated 

in [11]-[13], where the observation model prescribes 

modulating the incoming signal by a random sequence, 

integrating the modulated signal, and subsampling the 

output to obtain the low-dimensional data. Our novel 

approach, described below, relies on non-uniform chirped 

sampling for simplified information recovery compared to 

other A-to-I approaches, and allows sampling high analog 

input frequencies without the need for high-speed 

components operating at the Nyquist rate for the maximum 

analog input frequency. 

 

3. NYQUIST FOLDING A-TO-I RECEIVER  

The primary challenge in reconstructing a signal from its 

samples is that many different signals could possibly give 

rise to the same set of samples.  For example, uniformly 

subsampling a signal can lead to aliasing, preventing 

recovery of the original signal frequencies.  The novel 

sampling scheme proposed here overcomes this issue by 

imposing a frequency-dependent signature on each 

component of the original signal, from which the original 

signal component frequencies can be obtained.  

We now examine this proposed A-to-I receiver 

architecture, which folds multiple Nyquist zones into a 

narrow bandwidth prior to ADC conversion, in more detail.  

The Nyquist Folding Receiver (NYFR), shown in Figure 1, 

uses a wideband pre-select filter H() rather than a standard 

anti-aliasing filter prior to sampling; thus allowing multiple 

Nyquist zones to be sampled and subsequently folded into a 

continuous time analog interpolation filter.  The RF sample 

clock is modulated about a carrier to provide a non-uniform 

sample rate, as described here.  Following the discussion in 

[16], the phase of the RF sampling clock may be viewed as 

an occurrence function for a monotonically increasing 

function  (t) – the samples are taken as  (t) crosses 

multiples of 2.  In other words, sample times correspond to 

zero crossing rising voltage times of sin((t)), implying an 

instantaneous sample rate of ' 
(t) samples per second.  

Other than the fact that the sample clock is modulated and 

the filter H() allows aliasing, the front-end portion before 

the ADC follows the standard impulse sampling paradigm 

[17].  Note that this architecture also provides for wide 

analog input bandwidth without the need for high speed 

sample and hold circuits or Nyquist rate components [15]. 

 

Figure 1:  Nyquist Folding A-to-I Receiver Architecture 
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We focus on the case where F() is an ideal low-pass 

filter with cutoff S1/2 and where  (t) represents a narrow-

band phase (or frequency) modulation centered at S1: 

).()( 1 ttt S                  (2) 

For this narrowband frequency modulated RF sample clock, 

if the input is a narrowband signal with center frequency c 

and information modulation (t) 

)),(cos()( tttx c                    (3) 

the normalized interpolation filter output will be  

)),()(cos()( 1 tMttkty HSc        (4) 

where kH=round(c / S1), =sgn(c  - S1 kH), and M= kH. 

The value kH is the harmonic in the Fourier series of the 

pulse train that corresponds to the interpolation filter output, 

 is negative for spectrally reversed bandpass sampled 

signals from odd Nyquist zones NS (see Figure 2), M is the 

resulting modulation scale factor, and |C -S1kH| is the 

intermediate frequency after bandpass down-conversion 

sampling [18].  A derivation of this result is outlined in the 

Appendix. 

 

Figure 2:  Bandpass Sampled Signal Nyquist Zones 

In essence, the result in (4) implies that the received 

signal has an induced modulation M(t) of the same form as 

the RF sample clock modulation (t), with a modulation 

scale factor M and orientation  depending on the signal 

Nyquist zone NS. Thus even though multiple signals from 

different Nyquist zones may alias into the same band, the 

information from the different signals, including the original 

RF, can still be recovered.  We take advantage of the fact 

that the added modulation is different for each Nyquist zone 

so that the folded signals are separable when the signal 

environment is relatively sparse.  Note that the continuous 

time interpolation filter allows the RF sample rate to be de-

coupled from the ADC sample rate so that the ADC may 

sample at a uniform rate.  This feature helps to simplify the 

clocking of the digital signal processing (DSP), including 

local data movement between ADC and DSP. 

With narrowband frequency modulated (FM) RF 

sampling in the NYFR architecture of Figure 1, processing 

can be performed directly on the folded data without solving 

a computationally complex optimization.  For example, if 

the sample clock is a FM continuous wave (FMCW) 

periodic chirped signal, received narrowband signals will all 

have the same chirp pattern in the time-frequency plane, 

with center frequencies depending on bandpass sampling 

translation and frequency modulation scale factors 

depending on originating Nyquist zone.  Signal recovery 

may be performed by de-modulation as opposed to 

traditional l1 minimization approaches, as in (1). 

 

3. ILLUSTRATIVE SIMULATION EXAMPLE 

In this section, we illustrate the operation of the NYFR 

using a simulation with four signals.  Figure 3 illustrates a 

Matlab example of the NYFR with an ideal low pass 

interpolation filter and a sinusoidal FMCW RF sample 

clock. The top panel frequency-time plot shows four 

narrowband signals sampled at 20 Gsps – signal A is at 900 

MHz; signal B is at 1.9 GHz; signal C is at 3.2 GHz; signal 

D is at 8.4 GHz.  The middle panel shows the RF sample 

clock varying from 1950 to 2050 Msps over a 2.5 micro-

second window, with an average sample rate of 2.0 Gsps.  

The bottom panel shows the folded narrowband signals at 

the output of the interpolation filter with unique Nyquist 

zone dependent modulation for each signal. 

 

 

Figure 3:  Sinusoid FMCW Sample Clock Signal Example 

Table 1 shows the signal Nyquist zone, sampling 

harmonic (kH), folded intermediate frequency (IF), and 

modulation bandwidth for each of the four signals using (4) 

and signed Nyquist zones  NS corresponding to Figure 2. 

Table 1:  Illustrated Example Calculated Values 

Signal NS kH M IF (MHz) MF (MHz) 

A 0 0 0 900 0 

B -1 1 -1 100 -100 

C -3 2 -2 800 -200 
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5. LAB TEST EXAMPLE 

In this section, we present experimental results using a 

DCSM 7620 sampling device from Picosecond Pulse Labs  

[19] with a nominal sample aperture of about 20 

picoseconds.  In this example, we consider three narrow-

band tones – Signal A is at 7.65 GHz; Signal B is at 17.22 

GHz; and Signal C is at 32.6 GHz.  The interpolation filter 

bandwidth is about 850 MHz.  The output of the 

interpolation filter is uniformly sampled by an Atmel 10-bit 

ADC at 2 Gsps.  For this experiment, we consider two 

cases:  Uniform RF sampling at 2 Gsps and modulated RF 

sampling using an FMCW clock waveform (similar to the 

prior illustrative example) with an average sample rate FS1 =  

2000 Msps, F = 5 MHz, and modulation period = 2 sec. 

 

 

Figure 4:  Multi-Signal Lab Test Example 

The left panel of Figure 4 shows the results after 

uniform sampling at 2 Gsps.  As predicted by conventional 

bandpass sampling, signals A, B, and C alias (or fold) to 350 

MHz, 780 MHz, and 600 MHz respectively.  For this case, 

recovery of the original frequencies is not possible.  The 

right panel of Figure 4 shows the resulting time-frequency 

plot with the FMCW modulated RF sample clock.  The 

corresponding calculated values for this lab test are 

presented in Table 2 below.  From this example, we can see 

that the signals fold to the correct locations and that the 

induced modulation bandwidth and modulation orientation 

corresponds to the expected values listed in Table 2.  With 

the Nyquist-zone dependent induced modulation, it is 

possible to determine the original RF; it is also possible to 

remove the induced modulation to recover the original 

signal waveform. 

Table 2:  Multi-Signal Lab Test Calculated Values 

Signal NS kH M IF (MHz) MF (MHz) 

A -7 4 -4 350 -20 

B -17 9 -9 780 -45 

C 32 16 16 600 80 

 

6. CONCLUSIONS & FUTURE RESEARCH  

The Nyquist Folding Receiver is an “analog-to-

information” receiver motivated by compressive sensing 

that performs frequency modulated pulsed sampling directly 

at the RF to allow for unambiguous recovery after 

compressing multiple Nyquist zones into an analog 

interpolation filter.  The RF sample clock modulation 

induces a Nyquist-zone dependent frequency modulation on 

the received signals that can be measured and removed 

when the RF signal environment is relatively sparse and the 

folded signals do not overlap significantly.  With this 

architecture, it is possible to recover signals without 

performing a computationally complex l1 minimization.  In 

some applications, the folded signal parameters may be 

detected and measured directly in the compressed space, 

further reducing the computational complexity.  Although 

we have limited the discussion to narrow-band (Fourier-

sparse) signals in this paper, the NYFR is applicable to a 

broader class of signals.  Future research will examine 

NYFR performance using Restricted Isometry Properties of 

CS matrices formed from the modulated RF sampling, 

including extensions to signals that are not Fourier-sparse. 

 

APPENDIX 

In this section, we outline a derivation for the Nyquist 

Folding Receiver at the interpolation filter output y(t).  Note 

that the pulse train )(~ tp  can be expressed as a convolution 

of a Dirac sequence with a pulse template )(tp .   Using the 

Dirac scaling property we have 

 ,2)(2)()()(~  
k

ktttptp                (5) 

where  (t) is the phase function of the sampling oscillator.  

Using the identity 
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and following [20] with z = S1t+ (t), we have 

   

 
,)(

)()()(~

)(

1

)(

1

1

1












k

ttjk

S

k

ttjk

S

S

S

etp

ettptp








          (7) 

where the approximation in (7) assumes that the RF sample 

clock modulation is narrowband so that  

.|)(|max1 tS     The impact of this approximation can 

be appreciated by noting that the output magnitude is 

proportional to the sample rate.  As the sample rate changes, 

the output amplitude varies accordingly.  For example, if the 

sample rate varies from 1950 Msps to 2050 Msps (as 

described in the Matlab example in Section 3) the 

approximation results in an amplitude variation of 

20log10(2050/1950), or slightly greater than 0.4 dB. 

 



We now take the Fourier transform of the pulse train: 
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where the narrow-band modulation term Tk() is given by: 
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SSk ekPT                          (9) 

The additional approximation in (8) assumes that the sample 

aperture is short so that the Fourier transform of the pulse 

P(is approximately constant over the frequency range  

where      )(max)(min 11 tktk SS   . 

Using the notation of Figure 1, for input signals x(t) that 

fall within the passband of the pre-select filter H(), the 

output y(t) of the interpolation filter in the frequency domain 

is given by: 
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where XL and XR represent the left and right hand sides of 

the Fourier transform respectively (i.e., XL() = X() for 

< 0 and 0 otherwise; similar for XR()).  In (10), we 

assume that the signal and modulation Tk() are narrow 

enough in bandwidth so that the shifted left and right hand 

terms fall completely within the interpolation filter F() for 

the bandpass sampling harmonic kH.  In particular, for the 

case where x(t) is a narrow-band signal as given by (3), we 

have 
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Substituting (11) into (10) results in: 
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Taking the inverse Fourier transform yields the desired 

time-domain result. 
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