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L ook-Ahead Computation

First-Order |IR Filter
e Consider ald-order linear time-invariant recursion (seeFig. 1)
y(n+) =asy(n)+bsu(n)  (10.1)
e Theiteration period of this filter is{T +Ta}, Where{Tm,Ta} represent
word-level multiplication time and addition time

 In look-ahead transformation, the linear recursion isfirst iterated afew
times to create additional concurrency.

« By recasting this recursion, we can express y(n+2) as afunction of y(n)
to obtain the following expression (see Fig. 2(a))

y(n+2) =a[ay(n) +bu(n)| +bu(n+1)  (102)
e Theiteration bound of thisrecursion is 2(Tm +Ta) / 2 ,the same asthe
original version, because the amount of computation and the number of
logical delaysinside the recursive loop have both doubled
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e Another recursion equivalent to (10.2) is (10.3). Shown on Fig.2(b), its
iteration bound is(Trn +T, )/ 2, afactor of 2 lower than before.

y(n+2) =a*xy(n) +abxu(n) + b>xu(n+1) (10.3)

* Applying (M-1) steps of look-ahead to the iteration of (10.1), we can

obtain an equivalent implementation described by (see Fig. 3)
M-1
y(n+M) =a" xy(n)+ g a xoxu(n+M - 1- i) (104)

— Note: theloop delay isZ2 M irllstoead of 72 1 which meansthat the loop
computation must be completed in M clock cycles (not 1 clock cycle). The
iteration bound of this computation is(Tm +Ta ) / M, which corresponds
to asample rate M times higher than that of the original filter

— Theterms {ab ;a’b,oxaY h, aM } in (10.4) can be pre-computed
(referred to as pre-computation terms). The second term in RHS of (10.4)
is the look-ahead computation term (referred to as the look-ahead
complexity); it is non-recursive and can be easily pipelined
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Fig. 3: M-stage Pipelinable 1st-Order |IR Filter

L ook-ahead computation has allowed a single serial computation to be
transformed into M independent concurrent computations, and to
pipeline the feedback loop to achieve high speed filtering of asingle
time series while maintaining full hardware utilization.

Provided the multiplier and the adder can be conveniently pipelined,

the iteration bound can be achieved by retiming or cutset

transformation (see Chapter 4)
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Pipelining in 18-Order IR Digital Filters

— Example: Consider the 13-order IR filter transfer function

1
H(z) = — (10.5)
1- a3z
* Theoutput sampley(n) can be computed using the input sample
u(n) and the past output sample asfollows:

— A 10.6

y(n) = asy(n- 1)+ u(n) (10.5)

 Thesamplerate of thisrecursivefilter islimited by the
computation time of one multiply-add operation

— Look-ahead techniques add canceling poles and zeros with equal
angular spacing at a distance from the origin which is same as
that of the original pole. The pipelined filters are always stable
provided that the original filter is stable

— The pipelined realizations require alinear increase in complexity
but decomposition techniques can be used to obtain an
Implementation with logarithmic increase in hardware with
respect to the number of loop pipeline stages
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Pipelining in 13--Order IR Digital Filters (continued)

1. Look-Ahead Pipelining for 1--Order |IR Filters

» Look-ahead pipelining adds canceling poles and zeroes to the transfer
function such that the coefficients of { z'*,%¢z" M- inthe
denominator of the transfer function are zero. Then, the output sample
y(n) can be computed using the inputs and the output sample y(n-M)
such that there are M delay elementsin the critical loop, which inturn
can be used to pipeline the critical loop by M stages and the sample
rate can be increased by afactor M

» Example: Consider the 1%-order filter, H (2) = ZI/ (1- axz 1) which
hasapole at z=a (a£1). A 3-stage pipelined equivalent stable filter can
be derived by adding poles and zeroes at 7= l12/3  and is given
by

l+axz *+a’xz*?

1- a®xz3

H(2) =
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Pipelining in 13--Order IR Digital Filters (continued)

2. Look-Ahead Pipelining with Power -of-2 Decomposition

« With power-of-2 decomposition, an M-stage (for power-of-2 M)
pipelined implementation for 15-order IR filter can be obtained by
log, M setsof transformations

« Example: Consider a 1-order recursive filter transfer function
described by H (z) = (bxz*)/({L- axz*). The equivalent pipelined
transfer function can be described using the decomposition technique

as follows on M- 1
bz 1™ (1+a X2 )
H(2)= =0 : (10.7)
1- a¥ M

— This pipelined implementation is derived by adding (M-1) poles and zeros
at identical locations.

— Theoriginal transfer function hasasinglepoleat Z = A (see Fig.4(a)).
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— The pipelined transfer function has poles at the following locations (see
Fig.4(b) for M=8):

{a,867/M sosael M- )M ]

— The decomposition of the canceling zerosis shownin Fig.4(c)|, Thei-th
stage of the decomposed non-recursive portion implements 2 zeros
located at:

Z= aexp{j (2n+1)p/ (2 )) n=01xx(2 -1) (108

— Thei-th stage of the decomposed non-recursive portion requires asingle
pipelined multiplication operation independent of the stage number i
— The multiplication complexity of the pipelined implementation is
(log, M +2)
— Thefinite-precision pipelined filters suffer from inexact pole-zero

cancellation, which leads to magnitude and phase error. These errors can
be reduced by increasing the wordlength (see p. 323)
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Pipelining in 13--Order IR Digital Filters (continued)
3. Look-Ahead Pipelining with General Decomposition

 Theideaof decomposition can be extended to any arbitrary number of
loop pipelining stages M., If M =M M., %M | then the non-recursive
stages implement (M, - ]) Ml(MZ-]) ><>*f<|\/||§/| »*M M, ?):zeros,
respectively, totaling (M -1) zeros

o Example (Example10.3.3, p.325) Consider the 1s-order IR

1
H(z) =
@ 1- axg’
— A 12-stage pipelined decomposed implementation is given by
o 11 i .
_a,ax (1+ az‘l)(1+ a’z’ +a42'4)(1+ a62'6)
H (Z) 1 a.12 XZ 1_ a12 XZ-12

- Thisimplementation is basedona 2 3 2
decomposition (see Fig. 5)
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— Thefirst section implements 1 zero at —a, the second section implements 4
zeros at {ag”'p/3 ae*12p/3} , and the third section implements 6 zeros at

+ ja,ae"P/® aeti® o}
— Another decomposed implementation (2° 2~ 3 decomposition) is given

% (1+ az‘l)(1+ aZZ'Z)(1+ atz* +a82‘8)

1_ a12 X7 12
* Thefirst section implements 1 zero at —a, the second section
impl eqrents 2 zerosat £ Ja, and the third seTtion Implements 8 zeros

at ae-"'Jp/6 aé]p/3 a_e'-"la:’/3 aé]5p/6
— Thethird decomposition ( 3 2 2 decomposition) is given by
(1+ az '+ a22'2)(1+ a32'3)(1+ a62'6)
H(2) = Ty
1- a“xz

H(2) =

+j2p/3 )
 Thefirst section implements 2 zeros at {ae %/ } the second section
implements 3 zeros at { a, ae'—"jp/3} , and the third section
implements 6 zero at {aetjp/es +ia, aethp/tS}
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Pipelining in Higher-order IR Digital Filters

o Higher-order IR digital filters can be pipeined by using clustered
look-ahead or scattered |ook-ahead techniques. (For 13-order IIR filters,
these two |ook-ahead techniques reduce to the same form)

— Clustered look-ahead: Pipelined realizations require alinear
complexity in the number of loop pipelined stages and are not
always guaranteed to be stable

— Scattered look-ahead: Can be used to derive stable pipelined | IR
filters

— Decomposition technique: Can also be used to obtain area-efficient
Implementation for higher-order |IR for scattered |look-ahead filters

— Congtrained filter design techniques. Achieve pipelining without
pole-zero cancellation
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 Thetransfer function of an N-th order direct-form recursivefilter is
described by S N p gz
H(z) = A -0

1 _ é iN:1 ai v i (109)
« Equivaently, the output y(n) can be described in terms of the input
sample u(n) and the past input/output samples as follows

y(n)=3 ay(n-i)+a bu(n- i)

N (10.10)
=a ay(n-i)+z(n)

— The samplerate of thislIR filter realization is limited by the throughput of

1 multiplication and 1 addition, since the critical path containsasingle
delay element
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Pipelining in Higher-order |IR Digital Filters (cont’d)
1. Clustered L ook-Ahead Pipelining

e Thebasicideaof clustered |ook-ahead:

— Add canceling poles and zerosto the filter transfer function such
that the coefficients of {z*,%ez ™3} in the denominator of the
transfer function are 0, and the output samples y(n) can be
described in terms of the cluster of N past outputs:

{y(n- M)=cy(n- M - N+D}
— Hencethe critical loop of thisimplementation contains M delay
elements and a single multiplication. Therefore, this loop can be
pipelined by M stages, and the sample rate can be increased by a

factor M. Thisisreferred to as M-stage clustered |ook-ahead
pipelining
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o Example: (Example10.4.1, p.327) Consider the al-pole 2"9-order 1R filter
with poles at{1/2,3/4} . The transfer function of thisfilter is

H (z) = .
1- 5z +32° (10.11)

8
— A 2-stage pipelined equivalent IR filter can be obtained by eliminating

the z ! term in the denominator (i.e., multiplying both the numerator and
denominator by (1 + 5 /4 71 ). The transformed transfer functionis
given by:

5 —--1
H (2) = 1 At Tz
1- Szt +8z %2 1+ 527+
_ 1+32z2° (10.12)

1 - 19 ya 2 + 15 v 3
16 _ 32 o _
— From, the transfer function, we can see that the coefficient of 21 inthe
denominator is zero. Hence, the critical path of thisfilter contains 2 delay

elements and can be pipelined by 2 stages
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— Similarly, a 3-stage pipelined realization can be derived by eliminating
the terms of {z Lz 2} in the denominator of (10.21), which can be
done by multiplying both numerator and denominator by
1+5/47*+19/1672)

— The new transfer function is given by:
1+5z2'+2 Z°°
H (2) =

-3 4
1- Z +1282

(10.13)

« Computation complexity: The numerator (non-recursive portion) of this
pipelined filter needs (N+M) multiplications, and the denominator (recursive
portion) needs N multiplications. Thus, the total complexity of this pipelined
implementation is (N+N+M) multiplications

o Stability: The canceling poles and zeros are utilized for pipelining IR filters.
However, when the additional poles lie outside the unit circle, the filter
becomes unstable. Note that the filtersin (10.12) and (10.13) are unstable.
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2. Stable Clustered L ook-Ahead Filter Design

o |f thedesired pipeline delay M does not produce a stable filter, M
should be increased until a stable pipelined filter is obtained. To obtain
the optimal pipelining level M, numerical search methods are generaly

used
o Example (Example 10.4.3, p.330) Consider a5-level (M=5) pipelined
implementation of the following 2"9-order transfer function
1
H(2) = 1 =
1- 1.5336Zz " +0.6889z (10.14)

— By the stability analysis, it is shown that (M=5) does not meet the stability
condition. Thus M isincreased to M=6 to obtain the following stable
pipelined filter as

1+1.53367 * +1.6630z * +1.4939z ° +1.14547 * +0.72752 °
1- 1.3265z ° +0.5011z

H(2) =
(10.15)
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3. Scattered L ook-Ahead Pipelining

» Scattered |ook-ahead pipelining: The denominator of the transfer
function in (10.9) istransformed in away that it containsthe N terms

zM 7 M sz WM } . Equivalently, the state y(n) is computed in

terms of N past scattered states y(n-M),y(n-2M),..., and y(n-NM)

» |In scattered look-ahead, for each polesin the origind filter, we
introduce (M-1) canceling poles and zeros with equal angular spacing
at a distance from the origin the same as that of the original pole.

— Example: if theorigind filter hasapoleat 2= weadd (M-1)
polesand zerosat {z= pexp(j2ok/M ), k=1,2,%%M - 1}to
derive a pipelined realization with M loop pipeline stages

« Assume that the denominator of the transfer function can be factorized
as follows:

D(z) = C):\il(l- pzt) (10.16)
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(continued)
— Then, the pipelining process using the scattered |ook-ahead

approach can be described by
H(2) = 2
D(2)

_N@O,.L 0. [ pe™™zY) N
O,:10k01 pe?*Mz ) D'(2") (1017)

« Example (Example 10.4.5, p.332) Consider the 2"-order filter with complex
conjugate poles at z = re"' Thefilter transfer function is given by

1
H(z) =
(2) 1- 2rcosqz ' +r°z*?

— We can pipelinethisfilter by 3 stages byintroducing4additiona|
poles and zeros at {Z reJ(q+aO/3) 7= FEJ(q 210/3)} if g Qp/g
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— (cont’d) The equivaent pipelined filter isthen given by
1+ 2r cosq xz * +(1+2c0s2q )r2 >z 2+ 2r3cosq xz ® +r%z°*

H(z) =
(@) 1- 2r3cos( )z +r°z

— When g =20/3, then only 1 additional poleand zeroat z =T is
required for 3-stage pipelining since z=reti@*®/3) = (gtia
and 7=rg0-23) = Theequivalent pipelined filter isthen

given by 1- 1zt 1- rxz’?
H(2) = v .=
(2) (1+r><z'1+r2><z'2)(1- rxz'l) 1- rixz?

e Example (Example 10.4.6, p.332) Consider the 2"%-order filter with real
polesat \Z=1;,Z=1,s. Thetransfer function is given by

1
1- (r,+r, )z t+rr,xz 2

H(z) =
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— (cont’d) A 3-stage pipelined realization is derived by adding
poles(and zeros) at {z =re?P 7= rzglm/S} . The pipelined
realization is given by

H(2) = 1+(r, +1,)z ' + (rl2 1, + rzz)z'2 +r5,(r+1,)z %+, 7"

1- |2+, s+

— The pole-zero locations of a 3-stage pipelined 2"d-order filter with
poles at z=1/2 and z=3/4 are shown in Fig. 6

« CONCLUSIONS:

— If the original filter is stable, then the scattered | ook-ahead
approach leads to stable pipelined filters, because the distance of
the additional polesfrom the origina isthe same asthat of the
original filter

— Multiplication Complexity: (NM+1) for the non-recursive portion
In (10.17), and N for the recursive portion. Total pipelined filter
multiplication complexity is (NM+N+1)
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— (cont’d) The multiplication complexity is linear with respect to M.
and is much greater than that of clustered |ook-ahead

— Also the latch complexity is square in M, because each multiplier
Ispipelined by M stages

Alm([z]

@ TR Retl

Fig. 6: Pole-zero representation of a 3-stage pipelined equivalent
stable filter derived using scattered |ook-ahead approach
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4. Scattered L ook-Ahead Pipelining with Power -of-2
Decomposition

« Thiskind of decomposition technique will lead to alogarithmic
Increase in multiplication complexity (hardware) with respect to the
level of pipelining

o Letthetransfer function of arecursive digital filter be

O N i
bz’
H(2) = %No 2 _N@ (10.18)
1-a._ax' D2

— A 2-stage pi pel'nedol rnpl ementation be obtained by
multiplying by<17 _ ( 1) a xz fé"gthe numerator and
denominator. The equwal ent 2-stage pipelined implementation is

describ
H(z —' (g" 3 ik Xl_ 'hil(_ ) =N (2 (10.19)
_la1 Xz Xl- éIN (-1)'a xz ) D'(2)
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— (cont’d) Similarly, subsequent transformations can be applied to
obtain 4, 8, and 16 stage pipelined implementations, respectively

— Thus, to obtain an M-stage pipelined implementation (for power-
of-2 M), log, M sets of such transformations need to be applied.

— By applying (I 0g, M - 1) sets of such transformations, an
equivalent transfer function (with M pipelining stages inside the
recursive loop) can be derived, which requires a complexity of
(2N + Nlog, M +1) multiplications, alogarithmic complexity
with respect to M.

— Note: the number of delays (or latches) islinear: the total number of
delays (or latches) is approximately NM (Iog2 M +1), about NM
delaysin non-recursive portion, and NM log, M delays for
pipelining each of the N log, M multipliers by M stages

— In the decomposed redlization, the 13 stage implements an N-th
order non-recursive section, and the subsequent stages respectively
Implement 2N, 4N, ..., NM/2-order non-recursive sections
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e Example (Example 10.4.7, p.334) Consider a 2"d-order recursive filter
described by

Y(2) . by+bz'+b,z?

H(z)=
(2) U(z) 1- 2rcosqxzt+r?z?

— The poles of the system are located at {z:reijq} (see Fig. 7(a)).
— The pipelined filter requires (2Iog M +5) multiplicationsand is
described by {where q* 2p/M}

o 2 -

a0z ,
1- 2r™ cosMq sz M +r?Mz M
~ 100, M -1 i - o i+l i+l
O~ tl+2r2 cos2qxz’ +r? z°? )

H(2) =

— The 2M poles of the transformed transfer function (shown in Fig.
7(b)) are located at

Z:ré“j(q+i(ZD/M)), i :O,lZ)QQ’((M _ ])
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Parallel Processing in IIR Filters

o Parallel processing can also be used in design of 1R filters

o First discuss parallel processing for asimple 12-order IIR filter, then
we discuss higher order filters

o Example: (Example10.5.1, p.339) Consider the transfer function of a 18-
order IIR filter given by

H(z) =

Z-l

1- az’
— where \a\ £ 1 for stahility. Thisfilter hasonly 1 polelocatedat Z=a. The
corresponding input-output can be written as y(n+ 1)=ay(n)+u(n)
— Consider the design of a4-parallel architecture (L=4) for the foregoing
filter. Note that in the parallel system, each delay element isreferred to as
a block delay, where the clock period of the block system is 4 times the

sample period. Therefore, the loop update equation should update y(n+4)
by using inputs and y(n).

1
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— By iterating the recursion (or by applying look-ahead technique), we get
y(n+4) =ay(n)+au(n) +a’u(n+)+au(n+2)+u(n+3)  (10.20)

— Substituting n =4k
y(4k +4) = a*y(4k) + a’u(4k) + a’u(4k +12)
+au(dk +2) +u(4k + 3)

— The corresponding architecture is shown in Fig.8.

WA+ UK+ ukK+D)  u4K)

a
G R s
,fT\ ,fT\ ,fT\ < » D
LU/ LU/ LU/ L/
V(K +4) Y&

Fig. 8: (also see Fig.10.14, p. 340)
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The pole of the originadl filter isat Z = Q , whereas the pole for the
paralel systemisat 7= a4, which is much closer to the origin since

ﬂa“‘ £la, since [d £1}

An important implication of this pole movement is the improved
robustness of the system to the round-off noise

A straightforward block processing structure for L=4 obtained by
substituting n=4k+4, 4k+5, 4k+6 and 4k+7 in (10.20) isshown in Fig. 9.

Hardware complexity of this architecture: | multiply-add operations
(Because L multiply-add operations are required for each output and there
are L outputsin total)

The square increase in hardware complexity can be reduced by exploiting

the concurrency in the computation (the decomposition property in the
scattered |ook-ahead mode can not be exploited in the block processing mode
because one hardware delay element represents L sample delays)
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Fig. 9: (dso Fig.10.15, p.341) A 4-parallel 1s-order recursive filter
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e Trick:

— Instead of computing y(4k+1), y(4k+2) & y(4k+3) independently,
we can use y(4K) to compute y(4k+ 1), use y(4k+ 1) to compute
y(4k+2), and use y(4k+2) to compute y(4k+ 3), at the expense of an
Increase in the system latency, which leads to a significant
reduction in hardware complexity.

— Thismethod isreferred asincremental block processing, and
y(4k+1), y(4k+2) and y(4k+ 3) are computed incrementally.

o Example (Example 10.5.2, p.341) Consider the same 1-order filter in last
example. To deriveits 4-parallel filter structure with the minimum hardware
complexity instead of simply repeating the hardware 4 times asin Fig.15, the
Incremental computation technique can be used to reduce hardware complexity

— First, design the circuit for computing y(4k) (same as Fig.14)
— Then, derive y(4k+ 1) from y(4K), y(4k+2) from y(4k+ 1), y(4k+3) from
Yk+2)byusing o 4 +1) = ay (4k) + u(4k)
[ y(4k + 2) = ay (4k + 1) + u(4k +1)
Ly(4k +3) = ay (4k + 2) + u(4k + 2)
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— The complete architectureis shown in Fig.10

— The hardware complexity has reduced from L? to (2L-1) at the expense of
an increase in the computation time for y(4k+ 1), y(4k+2) and y(4k+3)

u(dk+3) u(4k+2) u(4k +1) u(4k)

a a’ a3
X

1 »é—» D »  y(4k)

y(4k+4) 5

y(4k +1)

y(4k + 2)

» VYy(4k+3)

"

Fig.10: (also see Fig.10.16, p.342) Incremental block filter structure with L=4
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e Example (Example 10.5.3, p.342) Consider a 2"d-order IR filter described
by the transfer function (10.21). Its pole-zero locations are shown in
Fig.11. Derive a 3-paralld IIR filter wherein every clock cycle 3
Inputs are processed and 3 outputs are generated

132
D=2 )
1-27+37°

— Sincethefilter order is 2, 2 outputs need to be updated independently and

the 3" output can be computed incrementally outside the feedback loop
using the 2 updated outputs. Assume that y(3k) and y(3k+1) are computed

using loop update operations and y(3k+2) is computed incrementally.
From the transfer function, we have:

y(m=3yn-D-gy(- 2+ 0 15,
f(n)=u(n)+2u(n-1) +u(n- 2)

— Theloop update process for the 3-parallel system isshownin Fig.12
where y(3k+ 3) and y(3k+4) are computed using y(3k) and y(3k+ 1)

(10.21)
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Fig.11: Pole-zero plots
for the transfer function

Fig.12: Loop update for
block size=3
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— The computation of y(3k+3) using y(3k) & y(3k+1) can be carried out if
y(n+3) can be computed using y(n) & y(n+1). Similarly y(3k+4) can be
computed using y(3k) & y(3k+1) if y(n+4) can be expressed in terms of
y(n) & y(n+1) (see Fig.13). These state update operations correspond to
clustered look-ahead operation for M=2 and 3 cases. The 2-stage and 3-
stage clustered |ook-ahead equations are derived as:

V(M) =5 y(n-D- $y(n- 2)+ f (n)
=2l (- 2)- $y(n- 9+ f(n- 1]- 3y(n- 2
+ f(n)
=8[2y(n- 3)- 2y(n- 9+ 1 (n- 2)]- Ly(n- 3
+2>f(n-1+ f(n)
(10.23)
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— Substituting n=3k+3 & n=3k+4 into (10.23), we have the following 2
loop update equations:

YK+ =R YEK+D - Fy(3K) +5 f(3k+2)
! +(3k+2) (10.24)
Ly(3k+4) =8 y(3k+1)- Zy(3K) +2 f(3K+2)
+2 f (3k+3)+ f (3k+4)
— Theoutput y(3k+2) can be obtained incrementally as follows:

y(Ek+2) =2y(3k+1D- 2y(3Kk)+ f(3k+2)

— Theblock structureis shownin Fig. 14

n ntl nt2 n+3 n+4
> )2 = B¢

o3,
Chepter 10 Flg 13: Relationsh p of the recursive outputs
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Fig. 14: Block structure of the 2"d-order IR filter (L=3)
(also see Fig.10.20, p.344)
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Comments
— Theoriginal sequential system has 2 poles at { 1/2, 3/4}. Now consider the

pole locations of the new parallel system. Rewrite the 2 state update
eguations in matrix form: Y(3k+3)—AY(3k)+F i.e.

(HK+I0_&5 e YH) U eft,J
Sl 8 fBaaf el 7
U €28 64U e2u

The elgenvalues of system matrix A are (%)3, (%)3 which are the poles of
the new parallel system. Thus, the parallel system is more stable. Note:
the parallel system has the same number of poles asthe original system

For a2™-order IR filter (N=2), there are total 3L+[(L-2)+(L-1)]+4+2(L-
2)="7L-3 multiplications, (the numerator part — 3L; the overhead of loop
update — [(L-2)+(L-1)]; the loop multiplications— 4; the incremental
computation — 2(L-2)). The multiplication complexity is linear function
of block size L. This multiplication complexity can be further reduced by
using fast parallel filter structures and substructure sharing for the
incrementally-computed outputs
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Combined Pipelining and Parallel Processing
For IIR Filters

* Pipeining and parallel processing can also be combined for IR filters
to achieve a speedup in sample rate by afactor LxM, where L denotes
the levels of block processing and M denotes stages of pipelining, or to
achieve power reduction at the same speed

o Example (Example 10.6.1, p.345) Consider the 1%-order IR with transfer
function (10.26). Derive the filter structure with 4-level pipelining and
3-level block processing (i.e., M=4, L=3)

1

H(2) "o (10.26)

— Because thefilter order is 1, only 1 loop update operation is required.The
other 3 outputs can be computed incrementally.
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— Since pipelining level M=4, the loop must contain 4 delay elements
(shown in Fig.15). Since the block size L=3, each delay element
represents a block delay (corresponds to 3 sample delays). Therefore,
y(3k+12) needs to be expressed in terms of y(3k) and inputs (see Fig. 15).

q 12
)

> » 4D >
U y(3k+12) y(3Kk)

Fig.15: Loop update for the pipelined block system
(also see Fig.10.21, p. 346)
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y(n) =ay(n- 1) +u(n)
= XO0KX
= a“y(n-12) +au(n- 11) + »ocx+u(n)
— Substituting n=3k+ 12, we get:
y(3k +12) = a® y(3k) + a™u(3k +1) + 0000+ U (3k +12)
where = a2y(3k)+a’f,(3k +6)+a’f,(3k +9) + f, (3k +12)
1 f,(3k+12) = a‘u(3k +10) + au(3k +11) +u(3k +12)
Ff,(3k+12) = a’f,(3k +9) + f,(3k +12)
— Findly, we have:
1y(3k+12) = a®y(3k)+a’f,(3k +6) +a’f,(3k + 9) + f,(3k +12)
[ y(3k +1) = ay(3K) + u(3k +1)
Ly(3k+2) = ay(3k +1) +u(3k + 2) (10.27)

— The parallel-pipelined filter structureis shown in Fig. 16
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Fig. 16: Thefilter structure of the pipelined block system
with L=3 & M=4 (also see Fig.10.22, p.347)
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« Comments
— The parallel-pipelined filter has 4 poles: (a®,- a°, ja®,- ja?). Sincethe
pipelining level is4 and the filter order is 1, there are total 4 polesin the
new system, which are separated by the same angular distance. Since the
block size is 3, the distance of the polesfrom the originis a’|.

— Note: The decomposition method is used here in the pipelining phase.

— The multiplication complexity ( assuming the pipelining level M to be
power of 2) can be calculated as (10.28), which is linear with respect to L,
and logarithmic with respect to M:

(L-1)+log,M +1+(L-1)=2L-1+log, M (10.28)

e Example (Example10.6.2, p. 347) Consider the 2"d-order filter in Example
10.5.3 again, design a pipelined-block system for L=3 and M=2

y(n) =5 y(n-1)- gy(n- 2)+ f(n);

f(n) =u(n) +2u(n- 1) +u(n- 2) (10.29)

Chapter 10 46



— A method similar to clustered look-ahead can be used to update y(3k+6)
and y(3k+7) using y(3k) and y(3k+1). Then by index substitution, the final
system of equations can be derived.

— Suppose the system update matrix is A. Since the poles of the original
system are (3, < ), the eigenvalues of A can be verified to be (%)6 | (%)6
— The poles of the new parallel-pipelined second-order filter are the square
: : 3 3 3 3
roots of eigenvalues of A, i.e., (%) - (%) , (%) - (%)
e Comments: In general, the systematic approach below can be used to
compute the pole location of the new parallel pipelined system:

— 1. Write the loop update equations using LM-level look-ahead, where M
and L denote the level of pipelining and parallel processing, respectively.

— 2. Write the state space representation of the parallel pipelined filter,
where state matrix A has dimension NxN and N is the filter order

— 3. Compute the eigenvalues| . of matrix A,

— 4. The NM poles of the new parallel-pipelined system correspond to the
M-th roots of the eigenvaluesof A, i.e,,

(Ii)Ml 1£i £ N
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