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| ntroduction

In afixed-point digital filter implementation, the overall input-output
behavior isnon-ideal. The quantization of signals and coefficients using finite
word-lengths and propagation of roundoff noisesto the output arethe sources
of noise.

Other undesirable behavior include limit-cycle oscillations where undesirable
periodic componentsare present at filter output even in the absence of any
input. These may be caused dueto internal rounding or overflow.

Scaling is often used to constrain the dynamic range of thevariablesto a
certain word-length

State variable description of a linear filter: provides a mathematical
formulation for studying various structures. These are most useful to compute
guantitiesthat depend on the internal structure of thefilter. Power at each
inter nal node and the output round-off noise of adigital FIR/IIR filter can be
easily computed oncethe digital filter isdescribed in state variable form
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Scaling and Round-off Noise
Scaling Operation

o Scaling: A process of readjusting certain internal gain parametersin
order to constrain internal signalsto a range appropriate to the hardware
with the constraint that the transfer function from input to output should
not be changed

e |llustration:

— Thefilter in Fig.11.1(a) with unscaled node x has the transfer
function

H(z) =D(2) + F(2)G(2) (11.1)

— To scalethe node x, we divide F(z) by some number b and multiply
G(z) by the same number asin Fig.11.1(b). Although the transfer

function does not change by this operation, the signal level at node x
has been changed
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Fig.11.1 (a) A filter with unscaled node x, (b) A filter with scaled node x’
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— The scaling parameter b can be chosen to meet any specific scaling
rule such as

ll,- scaling: b =3 |f() (11.2)
| 0O ¥ .
fl,- scaling: b :d\/aizo\fz(l), (11.3)

« wheref(i) isthe unit-sample response from input to the node x
and the parameter d can be interpreted to represent the number
of standard deviations representable in the register at node x if
Input is unit-variance white noise

— If theinput is bounded by |u(n)| £1, then

X(n)| = ‘é " f()u(n- i)‘ EQL T (114

« Equation (11.4) represents the true bound on the range of x and
overflow is completely avoided by |, scaling in (11.2), which
IS the most stringent scaling policy
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— Input can be generally assumed to be white noise.For unit-variance
white noise input, variance at node X is given by:

¥

EpCm] =4 () (11.5)

* |;scaling is commonly used because most input signals can be
assumed to be white noise

e (11.5) isavariance (not a strict bound). So, we can increase d
In (11.3) to prevent possible overflow. But increasing d will
decrease SNR (signal-to-noise ratio). Thus, there is a trade-off
between overflow and round-off noise
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Scaling and Round-off Noise(cont’ d)

Round-off Noise

e Round-off Noise: Product of two W-bit fixed-point fractionsis a (2W-1)
bit number. This product must eventually be quantized to W-bits by
rounding or truncation, which results in round-off noise.

* Example:

— Consider the 18-order IIR filter shownin Fig. 11.2. Assume that the
Input wordlength W=8 bits, and the multiplier coefficient wordlength
Isalso 8 hits. To maintain full precision in the output, we need to
Increase the output wordlength by 8 bits per iteration. Thisis clearly
Infeasible. Thus, the result needs to be rounded or truncated to its
nearest 8-hit representation. This introduces a round-off noise e(n)
(seeFig. 11.3).
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e(n): round-off error

Fig.11.3 Modd of Round-off Error



Round-off Noise Mathematical Model: usually modeled as an infinite
precision system with an external error input (see Fig.11.3)

Rounding is anonlinear operation, but its effect at the output can be
analyzed using linear system theory with the following assumptions
about e(n)
— 1.e(n) isuniformly distributed white noise
— 2. e(n) isawide-sense stationary random process (mean & covariance of
e(n) are independent of the time index n)
— 3. e(n) isuncorrelated to all other signals such as input and other noise
signals
L et the wordlength of the output be W-bits, then the round-off error
e(n) can be given by

- (W-1) -(W-1)

£e(n) £

(11.6)

— Theerror is assumed to be uniformly distributed over the interval in (11.6),
the corresponding probability distribution is shown in Fig.11.4, where D is
the length of theinterval and D=2 WY
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. The mean E[e(n)] and variance E[ez(n)] of this error function:
rElal=q S R(gd= X |7
i

E[e (n)] =

(11.7)

2
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2
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D
2
-0 12 3 (11.8)

— (11.8) can be rewritten as (11.9), where S : IS the variance of the round-
off error in afinite precision W-bit wordlength system

1x°
X°P,(X)dx=—="—
(AX=

Mlp<>IU
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— Thevarianceis proportional to ZZW, so, increase in wordlength by 1 bit
decreases the error by afactor of 4.

* Purpose of analyzing round-off noise: determine its effect at the output

— If the noise variance at output is not negligible in comparison to the output
signal level, the wordlength should be increased or some low-noise
structure should be used.

— We need to compute the SNR at the output, not just the noise gain to the
output

— Innoise analysis, we use a double-length accumulator model: rounding is
performed after two (2W-1)-bit products are added. Notice: multipliers are
the sources for round-off noise
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Chapter 11

State Variable Description of Digital Filters

Consider the signal flow graph (SFG) of an N-th order digital filter in
Fig.11.5. We can represent it in the following recursive matrix form:

j X(N+1) = Ax(n) +b>u(n), (11.10)

% y(n) =c’ x(n) +d>u(n) (11.12)

— where X isthe state vector, u isthe input, and y is the output of the filter; X,
b and c are Nx1 column vectors;é ISNxN matrix; d, u and y are scalars.
Let gfi (n)} be the unit-sample response from the input u(n) to the state
X (N) and let ¥;(N). be the unit-sample response from the state X (N)
to the output {Q (n)} . It is necessary to scale the inputs to multipliersin
order to avoid internal overflow
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Fig.11.5 Signal flow graph of IR filter

e Signalsx(n) areinput to the multipliersin Figll.5. We need to compute
f(n) for scaling. Conversdly, to find the noise variance at the output, it is
necessary to find the unit-sample response from the location of the noise
source e(n) to y(n). Thus g(n) represents the unit-sample response of the
noise transfer function

* Fromthe SFG of Fig.11.15, we can write;

X(2 _ bx*
U(2 _L- Z XA

(11.12)
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* Then, we can write the z-transform of f(n), F(z) as,
F(2=X@MN@=(1+Az'+A’Z?+x3bz!,  (11.13)

P f(nN=A""b, n3L1 (11.14)

— We can compute f(n) by substituting u(n) by d(n) and using the recursion
(11.15) and initial condition f(0)=0:

f(n+1) = Axf (n)+b>d(n) (11.15)
— The unit-sample response g(n) from the state x(n) to the output y(n) can be

computed similarly with u(n)=0. The corresponding SFG is shown in
Fig.11.6, which represents the following transfer function G(z),

CT
G(2) = = (11.16)
P g(n)=c’xA", n° 0 —
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o OUT

Fig.11.6 Signal flow graph of g(n)
e State covariance matrix K:
Ko E1x(n) =" (n)} (11.18)

— Because X isan Nx1 vector, K isan NxN matrix

— Kisameasure of error power at various states ( the diagonal elementK .
isthe energy of the error signal at state X; due to the input white noise)
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o ExpressK inaform that reflects the error properties of the filter:

— State vector X(n) can be obtained by the convolution of u(n) and f(n), by
us nE) (11.14) for f(n), we get:

x(n) =[x (n), X, (n),%% % ()] (11.19)
= f(n)*u(n) :é¥ A'bxu(n-1-1)

(11.20)
— Therefore
K = Elé (A'b)u(n- 1-1)§ u(n- m-1>(§mt_>f§
| 1=0 m=0
-E/& & A'bu(n- I- Du(n- m- (A"D)"
T1=0m=0 g
=4 a A'bE[u(n-1-Du(n- m- D[A"D)"  (12.21)
— Assu= mJ(O n) IS zero-mean unit-variance white noise, so we have:

1E[u®(n)] =1 (11.22)
{E[u(mu(n- k)] =0, k10  (11.23)
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— Substituting (11.22) & (11 23) into (11.21), we obtain:
¥ ¥
K=3 8 Abxd,, (A" —a f()f7()= aAb><Ab)
=0

¥ ¥

bb' +Q AbXAb)" =o'+ A bXA D)

=1 K=0

¥

=’ + 8 AADADY A =t A8 DA A (1129
K=

0
— Finally, we get the Lyapunov equation:

P K= b>b + AxK XA (11.25)

e |If for some state X;, E[)g | has ahigher value than other states, then
X needsto be assigned more bits, which leads to extra hardware
and irregular design.

— By scaling, we can ensure that all nodes have equal power, and the
same word-length can be assigned to all nodes.

I
23
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e Orthogonal filter structure: All internal variables are uncorrelated and
have unit variance assuming a white-noise input, it satisfies the

following: K=1= éxéT +hxp' (11.26)

» The advantages of orthogonal filter structure:
— Thescaling ruleis automatically satisfied

— Theround-off noise gain islow and invariant under frequency
transformations

— Overflow oscillations are impossible
o Similarly, define the output covariance matrix W as follows:

W= a g (Ng(n) = a (c' A c'A (11.27)
 Proceedingin aS|m|Iar manner as before we can get
W= A WA+ (11.28)
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Scaling and Round-off Noise Computation
Scaling Oper ation

The same word-length can be assigned to all the variables of the system
only if all the states have equal power. Thisis achieved by scaling

The state vector is pre-multiplied by inverse of the scaling matrix T.
— If we denote the scaled states by X, we can write,

Xs(M =T x(n) P x(n) =T »xg(n) (11.29)
— Substituting for x from (11.29) into (11.10) and solving for Xg, we get

T XXs(N+1) = AXT XXs(Nn) +b>u(n) (11.30)
P Xs(N+1) =T A3 xxs(n)+T " xo>u(n)  (11.31)
P Xs(N+1) = A xxg(n) +bg >u(n) (11.32)
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- wnere (A =TXAST, b =T"b)

« Similarly, the output equation (11.11) can be derived as follows
y(n) =c' A xxg(n) +d>u(n)

= (_3; XXs(N) +dg>u(n)
»] {9; — QT Xl’ dS = d} (11.33)

e ThescaledK matrix isgiven by
K. = Elxs ] = E[T o (T =T "B )T

P K =T" ’ﬁ"(l_l)T (11.34)

* |tisdedrableto have equal power at all states, so the transformation
matrix T is chosen such that the Ks matrix of the scaled system has all
diagonal entries as 1.

Chapter 11
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o Further assume T to be diagonal, i.e.,

T =diag[t,;,t,,, 000t ], (11.35)
i . 1 1 1 i
b T =dag[—,—»0ex—]=(T")"  (11.36)
o t, Uy T -
— From (11.34) and (11.35) and let (K ).. =1, we can obtain:
(Kg): = % =1, (11.37)
p t. = K.. (11.38)

e Conclusion: By choosing i-th diagonal entry in T to be equal to the
square root of the i-th diagonal element of K matrix, all the states can
be guaranteed to have equal unity power

e Example (Example 11.4.1,pp.387) Consider the unscaled 2™-order filter
shown in Fig.11.7, its state variable matrices are (see the next page):
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Fig.11.7 An SFG of an unscaled 2"d-order filter

— Example (cont’ d)
_é0 1y Ou  _ é;
A=e o0 DP=gu c=e
€16 u elu e
— The state covariance matrix K can be computed using (11.25) as
eKy Kpld_€e0 lu eK11
é U= €, @
eK21 Kzzu €16 O eK
6K, o AKy U
— € 1 U
el6 K12 256 K +1u
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B Thus,weget:{K =Ky :%’ Kp =Ky = O}

— For |, scaling with d=1, the transformation matrix is

2z 16
T = € O U
_~ € 0 16 U
8 J255
— Thusthe scaled filter is described as below and is shown in Fig.11.8
I 60 10 ., é0u
A= A =¢, (& bs =T D =g 0
€16 u e 16 U
é — U
QSZLT’Q:é@ U dg =
e V2550
— Note: the state covariance matrix Ks of the scaled filter is
 JSF oouem oweEE ou_é og
K.=é (e (é (=& .
—~s & J255 Y 256 US J255 Y U
60 “F0e0 =060 0 SO 1q
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Fig.11.8 A SFG of ascaled 2"9-order filter
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Scaling and Round-off Noise Computation (cont’d)

Round-off Noise Computation

Computation: Let €(Nn) be the error due to round-off &t state X . Then the
output round-off noise Y/ (), due to this error, can be written as the
convolution of the error input q(n) with the state-to-output unit-sample

response g (N):
y(m=e(m*g(n)= a g()g(n-1) (11.39)

— Consider the mean and the variance of Y(I) . Since€ () is white noise with
Zero mean, so we have:

Ely, (n)] = 0, (11.40)
ey )] =Ega 6 s (- D& (Mg, (- mg

a & a,(n- NE[g ()e (m]g, (n- m)
let s’2= E[qz(n)]: variancd e (n)]
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- ot Ely2(n)]=8 & g.(n- s 2,9, (n- m)
I m

=s 2601 gi(n- 1) =S§é. g7 (n) (11.41)
— Expand W inits explicit c;'natrlx form, we can observe that all its diagonal
entries are of theform @ g, *(n):
eg,(n),u
=8 9" (Mg =4 § »= Do), = g,(n) (11.42)
n n gg (n)é
¢ 3,0l a,aMeM * 3 6o
SA.eam 8,0 = &6,
_§ XX XK XK XK U
€o o) o u
& gu(Mg (N a gy(Mg,(n) » g gi(n) g
(11.43)

Chapter 11
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— Using (11.41), we can write the expression for the total output round-off
noise in terms of trace of W.

total _roundoff _noise =S jé :ilé ) g’(n) =s (feo[ iiV\/ii =S jTrace(V:\/)
(11.44)
— Note: (11.44) isvalid for all cases. But when there is no round-off

operation at any node, then the\\. corresponding to that node should not
be included while computing noise power

— (11.44) can be extended to compute the total round-off noise for the scaled
system, which will ssimply be the trace of the scaled W matrix:

total round-off noise (scaled system) =s ;Trace(W S  (11.45)
— Replacing the filter parameters with the scaled parametersin (11.27), we

show:
SR W =TTwT (1146

— Also, for adiagonal T Twecan write:

TracedW._ ) ) =8 (2w (11.47)

=1
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— (11.47) can be rewrltten as follows because t. © /K.

Trace@ ) AN) b ”

total round-off n0|se(scaled system) =s a (Kii >W“) (11.48)

=1
— Conclusion: The round-off noise of the scaled system can be computed

using (11.48), i.e., using {K”, Wi}

o Example (Example 11.4.2, p.390) To find the output round-off noise for the
scalégl filter in Fig.11.8, W can be calculated using (11.28) as

é/vll \let\J éo 16U é/vll W, u €0 1U+% f85l\;|
v, wol & o 8w, w g of & b

eﬁw 255 116 W21 ) 225
BicWi, - 25 Wy +55

CD
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- Thus W, leu éOOO49 - 0.0332¢
W, W, & 00332 02550 H

— Thetotal output round-off noise for the scaled filter is

(W, +W,)s 2 =0.2608 7

— For the unscaled filter in Fig.11.7:

eV, Wp,u_e€0 _6@ eV, Wil e0 1o eﬁ U
gNzl szH_ gl OH 3N21 WZZH>E116 OH gszl %H
— %sz + % 116W21 B 3_12(,J
g%Wu % Wi, + 4 H
- Thus &V, W, u_¢€0.0049 - 0.0333u
N, W, & 00333 0.2549 H
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— Thetotal output round-off noise for the unscaled filter is
2 2
(W, +W,,)>s 2 =0.2598

— Notice: The scaled filter suffers from larger round-off noise, which can
also be observed by comparing the unscaled and scaled filter structure:
roundoff _ noise(unscaled ) ~ 0.2598 <

roundoff _noise(scaled)  0.2608

* Inthe scaled filter, the input is scaled down by multiplying 0.998 to
the input to avoid overflow (See Fig.11.8). Therefore, to keep the
transfer functions the same in both filters, the output path of the
scaled filter should have again which is 1/0.998 times the gain of the
output path of the unscaled filter. Thus the round-off noise of the
scaled filter is1/0.9982 times that of the unscaled filter

» The above observation represents the tradeoff between overflow and
round-off noise: More stringent scaling reduces the possibility of
overflow but increases the effect of round-off noise

— Notice: (11.48) can be confirmed by:

256
(K11V\41 + K W, )unscaled = 2—55 (0.0049+0.2549) = 0.2608= (\Ml +W22)scaled
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Round-off Noise Computation Using
State Variable Description

Algorithmsfor Computing K and W

» Parseva’srelation and Cauchy’ sresidue theorem are useful for finding
signal power or round-off noise of digital filters. But, they are not useful
for complex structures.

* Thepower at each internal node and the output round-off noise of a
complex digital filter can be easily computed once the digital filter is
described in state variable form

e Algorithm for computing K

— Using (11.24), K can be computed efficiently by the following algorithm:
(seeit on next page)
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» Algorithm for computing K (cont’ d)
— 1 Initidlize F- A K= b%x'

— 2. Loop: K = E

x_
— 3. Computation continuesuntil F = 0
e Algorithm analysis:
— After the 13-loop iteration:
} K = Axbb")xA" +bb’

I
fF=A

(11.49)

— After the 2nd-|oop iteration:
P K = A’bb" (A®)T + A’bb" (A*)" + Abb" A" +bb",
=
fF

A’ (11.50)
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Chapter 11

— Thus, each iteration doubles the number of termsin the sum of (11.24).
The above algorithm converges as long as the filter is stable (because the
eigen-values of the matrix A are the poles of the transfer function)

— This algorithm can be used to compute W after some changes
Algorithm for Computing W
— 1. Initidize:  F - A' , W= cC ><_:T

— 2. Loop: W - FWXFT, i" iz

— 3. Computation continuesuntil F =0

Example (Example 11.6.1, p.404) Consider the scaled-normalized lattice
filter in Fig.11.9. We need to compute the signal powers at node 1, 2
and 3:
— Because there are 3 states (1—3), the dimensions of the matrix A, b, c and
dae3 3,3 1,3 1,and 1 1, respectively. From Fig.11.9, the state
eguations can be written as (see next page)



i % (n+1) =0.4944x,(n) - 0.1915x (n) +0.0443 (n) +0.8467u(n),
L %,(n+1) = 0.3695 () + 0.9054%,(1) - 0.2093¢,(1)

% (n+1) =0.2252%,(n) +0.9743¢(n)

f y(n) =0.0184x,(n) +0.1035, (n) + 0.3054x, () + 0.0029(1)
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y(n).. 0.323 0.9984 0.9471

0.0029 0.0569 0.3209
0.8467 0.3695 0.2252
u(n) #1 #2 #3
0.532 0.9293| - 0.929 - 0.9743 0.9743
) 0.3695 U 0.2252

Fig.11.9 A 39-order scaled-normalized lattice filter
(also see Fig.11.18, p.403, Textbook)
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— From these equations, matrices A, b, c and d can be obtained directly. By
substituting them into the K-computing algorithm, we get

él 0 O0u

_ € U
K:—éo 1 Ou
g0 0 1y

- Since{ K,; = K,, = K4, = 1}, sono scaling is needed for nodes
1—3. In addition, the K matrix shows that the signals at nodes 1—3 are
orthogonal to each other since all off-diagonal elements are zeros

— By the W-computing algorithm, we obtain:

{W,, =0.1455,W,, = 0.2952,W,, = 0.3096}
e Conclusion:

— Using state variable description method, we can compute signal
power or round-off noise of adigital filter easily and directly.
However, it can not be used on the nodes that are not connected to
unit-delay branches because these nodes do not appear in the state
variable description
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Slow-Down, Retiming, and Pipelining

| ntroduction

e Many useful realizations contains roundoff nodes that are not connected
to unit-delay branches. Thus these nodes (variables) do not appear in a
state variable description and the scaling and roundoff noise
computation methods can not be applied directly.

e The SRP ( slow-down and retiming/pipelining) transformation technique
can be used as a preprocessing step to overcome this difficulty

— Slow-down: every delay element (Z) in the original filter is changed into M
delay element (ZM)
— Retiming and Pipelining (Please see Chapters 4 and 3 for details)
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o Slow-down: Consider thefilter in Fig.11.10(b) which is obtained by applying
slow-down transformation (M=3) to the filter in Fig.11.10(a). By 3 slow down
transformation, every Z-variable in Fig.11.10(a) is changed into Z3. Thus the
transfer function of the transformed filter H’ (Z) isrelated to the original
transfer function H(Z) as (11.51):

H'(2) =F'(2G'(2) = F(2))G(2°) = H(2) (11.51)
— Thus, if the unit-sample response from the input to the internal node x in
Fig.11.10(a) is defined by:
f(n)={(0), (1), f (2,73, (11.52)
— Then, the unit-sample response from the input to the internal node x’ in
Fig.11.10(b) is:
f'(n)={(0),00, f(1)00, (2,007}, ;g3

— We can get:
, o) , o)
Ke=alf'(mrF=a f(n =K, (1154
_ Similarly it can be shown that:

W, =W, (11.55)
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Figure 11.10 (a) A filter with transfer function H(z)=F(2)G(Z2).
(b) Transformed filter obtained by 3 slow-down transformation
H’ (2)=F(Z3)G(Z3).
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— Theforegoing analysis shows that slow-down transformation does not
change the finite word-length behavior

* Pipdining:
— Consider thefilter in Fig.11.11(a), which has a non-state variable node x
on the feed-forward path. It is obvious that the non-state variable node

cannot be converted into the state variable node by slow-down
transformation.

— However, since x is on the feed-forward path, a delay can be placed on a
proper cut-set location as shown in Fig.11.11(b). This pipelining operation
converts the non-state variable node x into state variable node. The output
sequence of the pipelined filter is equal to that of the original filter except
one clock cycle delay.

— 0, the pipelined filter undergoes the same possibility of overflow and the
same effect of round-off noise asin the original filter. Thusit is clear that
pipelining does not change the filter finite word-length behavior
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(b)

Fig.11.11 (a) A filter with a non-state variable node on a feed-forward path
(b) Non-state variable nodeis converted into state variable node by pipelining
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e Retiming:

— Inalinear array, if either all the left-directed or all the right-directed edges
between modules carry at least 1 delay on each edge, the cut-set
localization procedure can be applied to transfer some delays or afraction
of adelay to the opposite directed edges (see Chapter 4) — Thisis called
retiming

« SRP transformation technigue is summarized as follows:

— 1. Apply slow-down transformation by afactor of M to alinear array, i.e.,
replace Z by zM. Also, apply pipelining technique to appropriate locations.

— 2. Distribute the additional delays to proper locations such that non-state
variable nodes are converted to state variable nodes

— 3. Apply the scaling and noise computation method using state variable
description

e Example (Example11.7.1, p.407) Consider the filter shown in Fig.11.12, same
as the 3rd-order scaled-normalized lattice filter in Fig.11.9 except that it has
five more delays. The SFG in Fig.11.12 is obtained by using a 2-slow
transformation and followed by retiming or cut-set transformation. (cont’ d)
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Fig.11.12 A transformed filter of the 3'd-order
scaled-normalized lattice filter in Fig.11.9
(also see Fig.11.21,pp.407)
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— (cont’d) Notice that signal power or round-off noise at every internal node
in this filter can be computed using state variable description since each
node is connected to a unit delay branch. Since there are 8 states, the
dimensions of the matrices A, b, ¢, and d are 8x8, 8x1, 8x1, and 1x1,
respectively. From Fig.11.12, state equations can be written as follows:

i x(n+1) =0.532x,(n) +0.8467u(n),

£ X,(n+1) = 0.3695x,(n) - 0.9293x,(n),

: X;(n+1) =0.2252x,(n) + 0.9743x,(n),

i X(N+1) = %5(n),

L x(n+1) = 0.0569 x (n) +0.9984 x. (n),

Z:ﬁ xs(N+1) = 0.3209x, (n) + 0.9471x, (n),

1 X;(n+1) =0.9293x,(n) +0.3695X%;(n),

£ X (N +1) = - 0.9743x, (n) +0.2252x,(n),
f y(n) = 0.323x. (n) + 0.0029u(n)
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— From the above equations, matrices A, b, ¢, and d can be obtained directly.
Using the K-computing algorithm, we obtain{ K. =1, i =1,2,%8},
which means that every internal node is perfectly scaled. Smilarly, we get
W, ,%%Wg, ={0.1455,0.2952 ,0.3096,0.3096 ,0.1043,0.104,

0.0412 ,0.1912}
]
— Thus, the total output round-off noiseis: =S s @ KW, =1.191s ;

— Note: no round-off operation is associated with hode 4 or state X, .
Therefore, W,, isnot included in Trace(W) for round-off noise
computation

e Example (omitted, study at home)
— For details, please see Example 11.7.2, p.408 of textbook
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