
Chapter 13: Bit Level
Arithmetic Architectures

Keshab K. Parhi

Chap. 13 2

• A W-bit fixed point two’s complement number A is
represented as :

A=aw-1.aw-2…a1.a0

 where the bits ai, 0 ≤ i ≤ W-1, are either 0 or 1,
and the msb is the sign bit.

• The value of this number is in the range of
 [-1, 1 – 2-W+1] and is given by :

A = - aw-1 + Σ aw-1-i2-i

• For bit-serial implementations, constant word
length multipliers are considered. For a W×W bit
multiplication the W most-significant bits of the
(2W-1)-bit product are retained.

Chap. 13 3

• Parallel Multipliers :
A = aw-1.aw-2…a1.a0 = -aw-1 + ∑

−

=

1

1

W

i
aw-1-i2-i

B = bw-1.bw-2…b1.b0 = -bw-1 + ∑
−

=

1

1

W

i
bw-1-i2-i

Their product is given by :
P = -p2W-2 + ∑

−

=

22

1

W

i
p2W-2-i2-i

In constant word length multiplication, W – 1 lower
order bits in the product P are ignored and the
Product is denoted as X ⇐ P = A × B, where

X = -xW-1 + ∑−

=

1

1

W

i
xw-1-i2-i

Chap. 13 4

• Parallel Multiplication with Sign Extension :
 Using Horner’s rule, multiplication of A and B can be written

as
P = A × (-bW-1 + Σ bW-1-i2-i)
 = -A. bW-1 + [A. bW-2 + [A. bW-3 +[… +

 [A. b1 + A b0 2-1] 2-1]…]2-1] 2-1

where 2-1 denotes scaling operation.
• In 2’s complement, negating a number is equivalent to taking

its 1’s complement and adding 1 to lsb as shown below:

11

1
11

11

1
11

1

1

1

1
11

1

1
11

22)1()1(

212)1(

22)1(

2

+−−−

=
−−−

+−−

=

−
−−−

−

=

−−

=

−
−−−

−

=

−
−−−

+−+−−=

+−−+=

−−+=

−=−

∑

∑

∑∑

∑

WiW

i
iww

WW

i

i
iww

W

i

iW

i

i
iww

W

i

i
iww

aa

aa

aa

aaA

Chap. 13 5

• The additions cannot be carried out directly due
to terms having negative weight. Sign extension is
used to solve this problem. For example,

A = a3 + a22-1 + a12-2 + a02-3

 = -a32 + a3 + a22-1 + a12-2 + a02-3

 = -a322 + a32 + a3 + a22-1 + a12-2 + a02-3

describes sign extension of A by 1 and 2 bits.

Tabular form of bit-level array multiplication

Chap. 13 6

• Parallel Carry-Ripple Array Multipliers :

Bit level dependence Graph

Chap. 13 7

Parallel Carry Ripple Multiplier

Chap. 13 8

DG for 4×4-bit carry
save array multiplication

Parallel carry-save array multiplier

Chap. 13 9

• Baugh-Wooley Multipliers:
Ø Handles the sign bits of the multiplicand and multiplier

efficiently.

Tabular form of bit-level Baugh-Wooley multiplication

Chap. 13 10

• Parallel Multipliers with Modified Booth Recoding :
Ø Reduces the number of partial products to accelerate the

multiplication process.
Ø The algorithm is based on the fact that fewer partial

products need to be generated for groups of consecutive
zeros and ones. For a group of “m” consecutive ones in the
multiplier, i.e.,
…0{11…1}0… = …1{00…0}0… - …0{00…1}0…

 = …1{00…1}0…
 instead of “m” partial products, only 2 partial products

need to be generated is signed digit representation is
used.

Ø Hence, in this multiplication scheme, the multiplier bits
are first recoded into signed-digit representation with
fewer number of nonzero digits; the partial products are
then generated using the recoded multiplier digits and
accumulated.

Chap. 13 11

string of 1’s-00111
beginning of 1’s-A-1011
A single 0-A-1101

beginning of 1’s-2A-2001
end of 1’s+2A2110
a single 1+A1010
end of 1’s+A1100

string of 0’s+00000
CommentsOperationb’

ib2i-1b2ib2i+1

Radix-4 Modified Booth Recoding Algorithm

Recoding operation can be described as:
b’

i = -2b2i+1 + b2i + b2i-1

Chap. 13 12

Interleaved Floor-Plan and Bit-Plane-Based
Digital Filters

• A constant coefficient FIR filter is given by:
y(n) = x(n) + f•x(n-1) + g•x(n-2)

 where, x(n) is the input signal, and f and g are filter
coefficients.

• The main idea behind the interleaved approach is to
perform the computation and accumulation of partial
products associated with f and g simultaneously thus
increasing the speed.

• This increases the accuracy as truncation is done at
the final step.

• If the coefficients are interleaved in such a way that
their partial products are computed in different rows,
the resulting architecture is called bit-plane
architecture.

Chap. 13 13

Bit-Serial Multipliers
• Lyon’s Bit-Serial Multiplier using Horner’s Rule :

• For the scaling operator, the first output bit a1 should be
generated at the same time instance when the first input a1
enters the operator. Since input a1 has not entered the
system yet, the scaling operator is non-causal and cannot be
implemented in hardware.

Chap. 13 14

Derivation of implementable bit-serial 2’s complement multiplier

Chap. 13 15

Lyon’s bit-serial 2’s complement multiplier

Chap. 13 16

Design of Bit-Serial Multipliers Using
Systolic Mappings

Here, dT = [1 0], sT = [1 1] and
pT = [0 1]

01x(-1,1)
10carry(1,0)
10b(1,0)
11a(0,1)

sTepTee

•Design of Lyon’s bit-serial multiplier by systolic mapping
Using DG of ripple carry multiplication.

Chap. 13 17

•Design of bit-serial multiplier by systolic mapping
using DG of ripple carry multiplication and the following :

dT = [0 1], sT = [0 1] and pT = [1 0]

1-1x(-1,1)
01carry(1,0)
01b(1,0)
10a(0,1)

sTepTee

Chap. 13 18

•Design of bit-serial multiplier by systolic mapping
using DG for carry-save array multiplication and the following :

dT = [1 0], sT = [1 1] and pT = [0 1]

01x(-1,1)
10carry(1,0)
11b(1,0)
11a(0,1)

sTepTee

Chap. 13 19

Dependence graph for carry save Baugh-Wooley
multiplication with carry ripple vector merging

Chap. 13 20

•Design of bit-serial Baugh-Wooley multiplier by systolic mapping
using DG for Baugh-Wooley multiplication and the following :

dT = [0 1], sT = [0 1] and pT = [1 0]

0-1carry-vm(-1,0)
11x(1,1)
01b(1,0)
10carry(0,1)
10a(0,1)

sTepTee

Here, carry-vm denotes the carry outputs in the
vector merging portion.

Chap. 13 21

Bit-Serial Baugh-Wooley Multiplier

Chap. 13 22

DG bit-serial Baugh-Wooley multiplier
with carry-save array and vector merging
portion treated as two separate planes

Chap. 13 23

Bit-serial Baugh-Wooley multiplier
using the DG having two separate planes

for carry-save array and the vector merging portion

Chap. 13 24

Bit-Serial FIR Filter

Bit-level pipelined bit-serial FIR filter, y(n) = (-7/8)x(n) + (1/2)x(n-1),
 where constant coefficient multiplications are implemented

as shifts and adds as y(n) = -x(n) + x(n)2-3 + x(n-1)2-1.
 (a)Filter architecture with scaling operators;

(b) feasible bit-level pipelined architecture

Chap. 13 25

Bit-Serial IIR Filter
• Consider implementation of the IIR filter

Y(n) = (-7/8)y(n-1) + (1/2)y(n-2) + x(n)
 where, signal word-length is assumed to be 8.
• The filter equation can be re-written as follows:

w(n) = (-7/8)y(n-1) + (1/2)y(n-2)
Y(n) = w(n) + x(n)

which can be implemented as an FIR section from y(n-1) with
an addition and a feedback loop as shown below:

Chap. 13 26

• Steps for deriving a bit-serial IIR filter architecture:
Ø A bit-level pipelined bit-serial implementation of the FIR

section needs to be derived.
Ø The input signal x(n) is added to the output of the bit-

serial FIR section w(n).
Ø The resulting signal y(n) is connected to the signal y(n-1).
Ø The number of delay elements in the edge marked ?D

needs to be determined.(see figure in next page)
• For, systems containing loop, the total number of delay

elements in the loops should be consistent with the original
SFG, in order to maintain synchronization and correct
functionality.

• Loop delay synchronization involves matching the number of
word-level loop delay elements and that in the bit-serial
architecture. The number of bit-level delay elements in the
bit-serial loops should be W × ND, where W is signal word-
length and ND denotes the number of delay elements in the
word-level SFG.

Chap. 13 27

• Bit-level pipelined bit-serial architecture, without
synchronization delay elements. (b) Bit-serial IIR filter.

Note that this implementation requires a minimum
feasible word-length of 6.

Chap. 13 28

Note:
Ø To compute the total number of delays in the bit-level

architecture, the paths with the largest number of delay
elements in the switching elements should be counted.

Ø Input synchronizing delays (also referred as shimming delays
or skewing delays).

Ø It is also possible that the loops in the intermediate bit-
level pipelined architecture may contain more than W × ND
number of bit-level delay elements, in which case the word-
length needs to be increased.

Ø The architecture without the two loop synchronizing delays
can function correctly with a signal word-length of 6, which
is the minimum word-length for the bit-level pipelined bit-
serial architecture.

Chap. 13 29

• Associativity transformation :

Loop iteration bound of IIR filter can be reduced
from one-multiply-two-add to one-multiply-add

by associative transformation

Chap. 13 30

Bit-serial IIR filter after associative transformation.
This implementation requires a minimum feasible

word-length of 5.

Chap. 13 31

Canonic Signed Digit Arithmetic
• Encoding a binary number such that it contains the

fewest number of non-zero bits is called canonic
signed digit(CSD).

• The following are the properties of CSD numbers:
Ø No 2 consecutive bits in a CSD number are non-zero.
Ø The CSD representation of a number contains the

minimum possible number of non-zero bits, thus the name
canonic.

Ø The CSD representation of a number is unique.
Ø CSD numbers cover the range (-4/3,4/3), out of which

the values in the range [-1,1) are of greatest interest.
Ø Among the W-bit CSD numbers in the range [-1,1), the

average number of non-zero bits is W/3 + 1/9 + O(2-W).
Hence, on average, CSD numbers contains about 33%
fewer non-zero bits than two’s complement numbers.

Chap. 13 32

• Conversion of W-bit number to CSD format:
– A = a’W-1. a’W-2… a’1. a’0 = 2’s complement number
– Its CSD representation is aW-1. aW-2… a1. a0

• Algorithm to obtain CSD representation:
– a’-1 = 0;
– γ-1 = 0;
– a’W = a’W-1;
– for (i = 0 to W-1)

{
θi = a’i ⊕ a’i-1;
γi = γi-1θi;
ai = (1 - 2a’i+1)γi;

}

Chap. 13 33

-1010-100-10ai

-111-1-1-11-1-11 - 2a’i+1

101010010γi

101010011θi

1100111011a’i
-10W-1Wi

Table showing the computation of the CSD
representation for the number 1.01110011.

Chap. 13 34

CSD Multiplication

A CSD multiplier using linear arrangement of adders
to compute x × 0.10100100101001

•Horner’s rule for precision improvement : This involves
 delaying the scaling operations common to the 2 partial
 products thus increasing accuracy.
•For example, x•2-5 + x•2-3 can be implemented as
 (x•2-2 + x)2-3 to increase the accuracy.

Chap. 13 35

Using Horner’s rule for partial product accumulation
to reduce the truncation error.

Chap. 13 36

Rearrangement of the CSD multiplication of
x × 0.10100100101001 using Horner’s rule for
partial product accumulation to reduce the

truncation error.

Chap. 13 37

Use of Tree-Height Reduction for Latency Reduction

(a) linear arrangement (b) tree arrangement

Combination of tree-type arrangement and Horner’s rule
for the accumulation of partial products in CSD multiplication

Chap. 13 38

Bit serial architecture using CSD. In this case the coefficients
-7/32 = -1/4 + 1/32 is encoded as 0.01001 and ¾ = 1 – ¼ is

encoded as 1.01.

