Chapter 15: Numerical
Strength Reduction

Keshab K. Parhi

e Sub-expression elimination is a numerical transformation of
the constant multiplications that can lead to efficient
hardware in terms of area, power and speed.

e Sub-expression can only be performed on constant
multiplications that operate on a common variable.

e Itis essentially the process of examining the shift and add
Implementations of the constant multiplications and finding
redundant operations.

e Example:a” xand b~ X, where a =001101 and
b = 011011 can be performed as follows:
- a x=000100" x +001001 " x

~ b’ x=010010" x + 001001~ x = (001001~ X) << 1 +
(001001~ X).

- The term 001001 ° x needs to be computed only once.

- So, multiplications were implemented using 3 shifts and 3
adds as opposed to 5 shifts and 5 adds.

Chap. 15 2

Multiple Constant Multiplication(MCM)
The algorithm for MCM uses an iterative matching
process that consists of the following steps:

e EXpress each constant in the set using a binary
format (such as signed, unsigned, 2's complement
representation).

e Determine the number of bit-wise matches (non-
zero bits) between all of the constants in the
set.

e Choose the best match.

« Eliminate the redundancy from the best match.
Return the remainders and the redundancy to
the set of coefficients.

e Repeat Steps 2-4 until no improvement is
achieved.

Chap. 15 3

Example:

Constant | Value | Unsigned
a 237 | 11101101
b 182 | 10110110
C 93 | 01011101

Binary representation of constants

Constant | Unsigned Constant Unsigned
Rem. of a | 10100000 Rem. of a 00000000
b 10110110 Rem. of b 00010110
Rem. of ¢ | 00010000 Rem. of c 00010000
Red. of a,c | 01001101 Red. of a,c 01001101
Red. of Rem a,b | 10100000

Updated set of constants

1st teration

Chap. 15

Updated set of constants
2nd iteration

Linear Transformations
e A general form of linear transformation is given as:
y =T*X
where, T Is an m by n matrix, y is length-m vector and X is a
length-n vector. 1t can also be written as:

Y =atx,i=1..,m

« The following steps are followed:

» Minimize the number of shifts and adds required
to compute the products t;X; by using the iterative
matching algorithm.

» Formation of unique products using the sub-expression
found in the 15t step.

» Final step involves the sharing of additions, which is
common among the y;'s. This step is very similar to the
MCM problem.

Chap. 15

Example: 57 8 2 13

92 11 7 13
T=¢€ u
€5 8 2 1
€7 11 7 1
*The constants in each column multiply to a common variable. For
Example x, is multiplied to the set of constants [7, 12, 5, 7].

« Applying iterative matching algorithm the following table is
obtained.

Chap. 15

Column 1 Column 2 Column 3 Column 4
0101 1000 0010 1001
0010 1011 0111 0100
1100 0010

 Next, the unique products are formed as shown
below:

p, = 0101*x,, p, = 0010*X,, p; = 1100*X,
P, = 1000*X,, ps = 1011%*X,,
Ps = 0010%*X,, p; = 0111%*X,
Pg = 1001*X,, pg = 0100*X,, p,o = 0010*X%,
e Using these products the y;'s are as follows:

Y1 =Pt P2t Ps* Pt Pg* Do,
Y2=P3t Ps+P; T Pg t Po,

Y3=P1 T Pst Pst Pt Pgt Pios

Ya=P1+ P2t Pst P7+ Pgt Pro;

Chap. 15

e This step involves sharing of additions which are
common to all y;’s. For this each y; Is represented
as k bit word (1 £ k £ 10), where each of the k
products formed after the 2 step represents a
particular bit position. Thus,

y, = 1101010110, y, = 0010101110,
y; = 1001010111, y, = 1100101101.

e Applying iterative matching algorithm to reduce
the number of additions required for y;'s we get:

Y1 = P2t (Pt P4t Pet Pgt Po)
Yo =P3* Pg t (Pt P7 + Pg);
Y3 =Pigt (P + Pst Pet Pg + Po);
Ya=Pyt P2t Pt (PstP7t Ps);
 The total number of additions are reduced from
35 to 20.

Chap. 15

Polynomial Evaluation
Evaluating the polynomial:
X3+ X7+ X4+ X2+ X
e Without considering the redundancies this polynomial
evaluation requires 22 multiplications.

« Examining the exponents and considering their binary
representations:

1=0001, 2 =0010, 4 = 0100, 7 = 0111, 13 =1101.
e X’ can be considered as x*~ x? ~ x% Applying sub-expression
sharing to the exponents the polynomial can be evaluated as
follows:

X8 (x4 xX)+x2" (X*7 X)+x*+ X% +X
e The terms x?, x* and x8 each require one multiplication as
shown below:
X2=X" X, X+=Xx2" x?2, x8=x4" x4
e Thus, we require 6 instead of 22 multiplications.

Chap. 15 9

Sub-expression Sharing in Digital Filters

 Example of common sub-expression elimination
within a single multiplication :

y = 0.101000101*x.
This may be implemented as:
y = (x> 1) = (x> 3) + (x> 7) - (x > 9).
Alternatively, this can be implemented as,
X2 =X - (X> 2)
Y=(X2>»>1)+(X2>7)
which requires one less addition.

Chap. 15

10

 Inorder to realize the sub-expression elimination
transformation, the N-tap FIR filter:
y(n) = coX(n) + c,X(n-1) + ... + coX(N-N+1)
must be implemented using transposed direct-

form structure also called data-broadcast filter
structure as shown below:

Chap. 15 11

Represent a filter operation by a table (matrix)
{X;;}, where the rows are indexed by delay I and
the columns by shift j, 1.e., the row i is the
coefficient c; for the term x(n-i), and the column O
In row I Is the msb of c; and column W-1in row I Is
the Isb of c; , where W is the word length.

The row and column indexing starts at O.

The entries are O or 1 if 2's complement
representation is used and {1, O, 1} if CSD is used.

A non-zero entry in row I and column j represents
X(n-1) > J. It iIs to be added or subtracted
according to whether the entry is +1 or -1.

Chap. 15 12

Example: _ o
y(n) = 1.000100000*x(n) + 0.101010010*x(n-1)
+ 0.000100001*%x(n-2)

g [
SIEANYE) G
B B

This filter has 8 non-zero terms and thus requires 7
additions. But, the sub-expressions x1 + x1[-1] > 1
occurs 4 times in shifted and delayed forms by various
amounts as circled. So, the filter requires 4 adds.
X2 =x1-x1[-1] > 1

y =X2-(X2>»>4) - (x2[-1] >» 3) + (X2[-1] » 8)
An alternative realization is :
X2 = X1 - (X1>4) - (x1[-1] » 3) + (x1[-1] > 8)

y = X2 - (X2[-1] > 1).

Chap. 15 13

Example:
y(n) = 1.01010000010*x(n) + 0.10001010101*x(n-1)
+ 0.10010000010*%(n-2) + 1.00000101000*x(n-4)

The substructure matching procedure for this design

Is as follows:

e Start with the table containing the coefficients of
the FIR filter. An entry with absolute value of 1 in
this table denotes add or subtract of x1. Identify
the best sub-expression of size 2.

1 Y]]]
ARVCINENSE
EImm i

i e

Chap. 15 14

e Remove each occurrence of each sub-expression
and replace it by a value of 2 or -2 in place of the
first (row major) of the 2 terms making up the
sub-expression.

-1 2 1 2

1 -1

« Record the definition of the sub-expression. This
may require a negative value of shift which will be
taken care of later.

X3 = X1 - x1[-1] > (-1)

Chap. 15 15

e Continue by finding more sub-expressions until done.

-1 3 2
-3 -2

1 -1

5. Write out the complete definition of the filter.

X2 = X1 - x1[-1] >» (-1)
X3 =X2+X1>2
y=-X1+Xx3>»2+x2>»>10-x3[-1] > 5 - x2[-1] » 11
-x2[-2] >»> 1 + x1[-3] » 6 - x1[-3] > 8.

Chap. 15 16

e If any sub-expression definition involves
negative shift, then modify the definition and
subsequent uses of that variable to remove the
negative shift as shown below:

X2 = X1 > 1-x1[-1]
X3 =%X2+x1>3
y=-x1+x3>1+x2>»>9-x3[-1] >» 4 - x2[-1] »> 10
- X2[-2] + X1[-3] > 6 - X1[-3] » 8.

Chap. 15 17

Input

= Qutput

3-tap FIR filter with sub-expression sharing for
3-tap FIR filter with coefficients c, = 0.11010010,
c, = 0.10011010 and c, = 0.00101011.
This requires 7 shifts and 9 additions compared to
12 shifts and 11 additions.

Chap. 15 18

o]
]
Le3
@fe

LLotL

¢

3-tap FIR filter with sub-expression sharing
requiring 8 additions as compared to 9 in the
previous implementation.

Chap. 15

Using 2 most common sub-expressions
In CSD representation

e X-X>»>2and X+ X > 2 are the 2 most common sub-
expressions in CSD representation.

P “ “o

?ﬂd Gz G2 (32) >z (2o (o0 o> (22 (o)
—

?L([]} j’(ﬂ-]]
D~ Df——~t~— D]

An FIR filter using the term sharing, where the two
most common sub-expressions in CSD numbers 101
and 101, together with isolated 1 are shared among

all filter coefficients.

Chap. 15 20

(o)
(a)
——T
o T+
B EaldlEd ralmalEd
(o)
+
W@, D}~ G {D] if o2

(b)

3-tap FIR filter with coefficients c, = 0.10101010101,
¢, = 0.10010100101 and ¢, = 0.10101010000. 2 additions

In the dotted square in (a) are shared in (b). Filter requires
only 7 additions and 7 shifts as opposed to 12 adds and

12 shifts in standard multiplierless implementation.
Chap. 15 21

