
Chapter 4: Retiming

Keshab K. Parhi

Chap. 4 2

Retiming :
Moving around existing delays
• Does not alter the latency of the system
• Reduces the critical path of the system
• Node Retiming

5D
D

3D
3D

2D
•Cutset Retiming

A

E

DB

C

F

2D

D

D
D

D

D

Chap. 4 3

Retiming

• Generalization of Pipelining
• Pipelining is Equivalent to Introducing

Many delays at the Input followed by
Retiming

Chap. 4 4

• Retiming Formulation

r(U) r(V)

Source node Destination node
U V

ω
Retiming

U V
ω’

ω’ = ω + r(V) - r(U)

•Properties of retiming
–The weight of the retimed path p = V0 --> V1 --> …..Vk is given by
ωr(p)= ω(p) + r(Vk) - r(V0)
–Retiming does not change the number of delays in a cycle.
–Retiming does not alter the iteration bound in a DFG as the
number of delays in a cycle does not change
–Adding the constant value j to the retiming value of each node
does not alter the number of delays in the edges of the retimed
graph.

•Retiming is done to meet the following
– Clock period minimization
– Register minimization

Chap. 4 5

• Retiming for clock period minimization
– Feasibility constraint
 ω’(U,V) ≥ 0 ⇒ causality of the system
 ⇒ ω(U,V) ≥ r(U) - r(V) (one inequality per edge)
– Critical Path constraint

 r(U) - r(V) ≤ W(U,V) - 1 for all vertices U and V in the graph
such that D(U,V) > c where c = target clock period. The two
quantities W(U,V) and D(U,V) are given as:

W(U,V) = min{w(p) : U→V}
D(U,V) = max{t(p) : U→V and w(p) = W(U,V)

A B

F

C D E

G

(1)

(1)

(1)

(1)

(1) (1)

(2)

D

D

2D

W(A,E) = 1 & D(A,E) = 5

Chap. 4 6

• Algorithm to compute W(U,V) and D(U,V):
• Let M = tmaxn, where tmax is the maximum computation time of

the nodes in G and n is the # of nodes in G.
• Form a new graph G’ which is the same as G except the edge

weights are replaced by w’(e) = Mw(e) – t(u) for all edges
UàV.

• Solve for all pair shortest path problem on G’ by using Floyd
Warshall algorithm. Let S’UV be the shortest path form U à
V.

• If U ≠ V, then W(U,V) = S’UV/M and D(U,V) = MW(U,V) -
S’UV + t(V). If U = V, then W(U,V) = 0 and D(U,V) = t(U).

• Using W(U,V) and D(U,V) the feasibility and critical path
constraints are formulated to give certain inequalities.
The inequalities are solved using constraint graphs and if a
feasible solution is obtained then the circuit can be
clocked with a period ‘c’.

Chap. 4 7

• Solving a system of inequalities : Given M inequalities in N
variables where each inequality is of the form ri – rj ≤ k for
integer values of k.
Ø Draw a constraint graph
ØDraw the node i for each of the N variables ri, I= 1, 2,

…, N.
ØDraw the node N+1.
ØFor each inequality ri – rj ≤ k , draw the edge jài of

length k.
ØFor each node i, i = 1, 2, …, n, draw the edge N+1 ài

from the node N+1 to node I with length 0.
Ø Solve using a shortest path algorithm.
ØThe system of inequalities have a solution iff the

constraint graph contains no negative cycles.
ØIf a solution exists, one solution is where ri is the

minimum length path from the node N+1 to node i.

Chap. 4 8

• K-slow transformation
– Replace each D by kD

A B

D

(1) (1)
Clock

0 A0 → B0
1 A1 → B1
2 A2 → B2

After 2-slow transformation

A B

2D

(1) (1)

Titer= 2ut

Clock
0 A0→B0
1
2 A1→B1
3
4 A2→B2

Tclk= 2ut
Titer= 2×2ut=4ut

*Input new samples every alternate cycles.
*null operations account for odd clock cycles.
*Hardware utilized only 50% time

Chap. 4 9

• Retiming 2-slow graph

A B

D

D

Tclk = 1ut
Titer = 2×1=2ut

*Hardware Utilization = 50 %

*Hardware can be fully utilized if
two independent operations are
available.

Chap. 4 10

A 100 stage Lattice Filter with critical path 2 multiplications and 101 additions

The 2-slow version

2-Slow Lattice Filter (Fig. 4.7)

Chap. 4 11

A retimed version of the 2 slow circuit
with critical path of 2 multiplications

and 2 additions

If Tm = 2 u.t. and Ta = 1 u.t., then
Tclk = 6 u.t., Titer = 2X6 = 12 u.t.

In Original Lattice Filter, Titer = 105 u.t.
Iteration Period Bound = 7 u.t.

Chap. 4 12

Other Applications of Retiming

• Retiming for Register Minimization
(Section 4.4.3)

• Retiming for Folding (Chapter 6)
• Retiming for Power Reduction (Chap. 17)
• Retiming for Logic Synthesis (Beyond

Scope of This Class)
• Multi-Rate/Multi-Dimensional Retiming

(Denk/Parhi, Trans. VLSI, Dec. 98, Jun.99)

