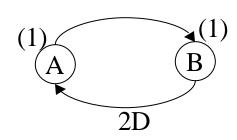
Chapter 5: Unfolding

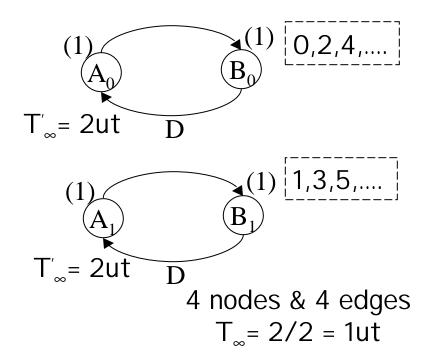
Keshab K. Parhi



$$A_0 \rightarrow B_0 \Rightarrow A_2 \rightarrow B_2 \Rightarrow A_4 \rightarrow B_4 \Rightarrow \dots$$

 $A_1 \rightarrow B_1 \Rightarrow A_3 \rightarrow B_3 \Rightarrow A_5 \rightarrow B_5 \Rightarrow \dots$
2 nodes & 2 edges
 $T_{\infty} = (1+1)/2 = 1$ ut

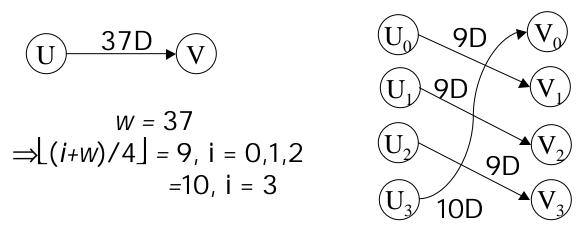
2-unfolded



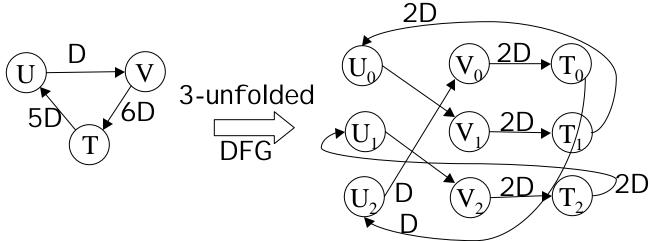
• In a 'J' unfolded system each delay is J-slow => if input to a delay element is the signal x(kJ + m), the output is x((k-1)J + m) = x(kJ + m - J).

Algorithm for unfolding:

- For each node U in the original DFG, draw J node U_0 , U_1 , U_2 ,..., U_{J-1} .
- For each edge $U \rightarrow V$ with w delays in the original DFG, draw the J edges $U_i \rightarrow V_{(i+w)\%J}$ with $\lfloor (i+w)/J \rfloor$ delays for i = 0, 1, ..., J-1.



- ➤ Unfolding of an edge with w delays in the original DFG produces J-w edges with no delays and w edges with 1delay in J unfolded DFG for w < J.
- ➤ Unfolding preserves precedence constraints of a DSP program.



Properties of unfolding:

➤ Unfolding preserves the number of delays in a DFG. This can be stated as follows:

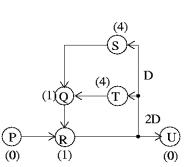
$$\lfloor W/J \rfloor + \lfloor (W+1)/J \rfloor + \dots + \lfloor (W+J-1)/J \rfloor = W$$

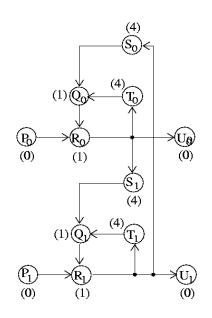
- ➤ J-unfolding of a loop I with w_l delays in the original DFG leads to $gcd(w_l, J)$ loops in the unfolded DFG, and each of these $gcd(w_l, J)$ loops contains $w_l/gcd(w_l, J)$ delays and $J/gcd(w_l, J)$ copies of each node that appears in I.
- \blacktriangleright Unfolding a DFG with iteration bound T_{Ψ} results in a J-unfolded DFG with iteration bound JT_{Ψ} .

- Applications of Unfolding
 - ➤ Sample Period Reduction
 - > Parallel Processing
- Sample Period Reduction
 - \triangleright Case 1 : A node in the DFG having computation time greater than T_{∞} .
 - ➤ Case 2: I teration bound is not an integer.
 - \triangleright Case 3 : Longest node computation is larger than the iteration bound T_{∞} , and T_{∞} is not an integer.

Case 1:

➤ The original DFG cannot have sample period equal to the iteration bound because a node computation time is more than iteration bound

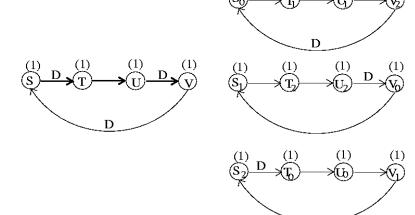




- If the computation time of a node 'U', t_u , is greater than the iteration bound T_{∞} , then $\lceil t_u/T_{\infty} \rceil$ unfolding should be used.
- ➤ In the example, $t_u = 4$, and $T_{\infty} = 3$, so $\lceil 4/3 \rceil$ unfolding i.e., 2-unfolding is used.

• Case 2:

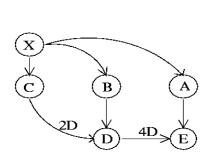
The original DFG cannot have sample period equal to the iteration bound because the iteration bound is not an integer.

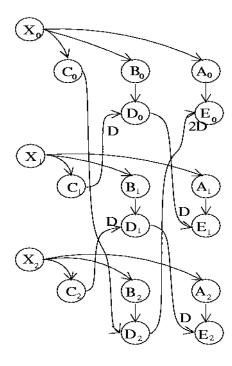


- \triangleright If a critical loop bound is of the form t_i/w_i where t_i and w_i are mutually co-prime, then w_i -unfolding should be used.
- ➤In the example $t_1 = 60$ and $w_1 = 45$, then t_1/w_1 should be written as 4/3 and 3-unfolding should be used.
- •Case 3 : In this case the minimum unfolding factor that allows the iteration period to equal the iteration bound is the min value of J such that $JT_{\it Y}$ is an integer and is greater than the longest node computation time.

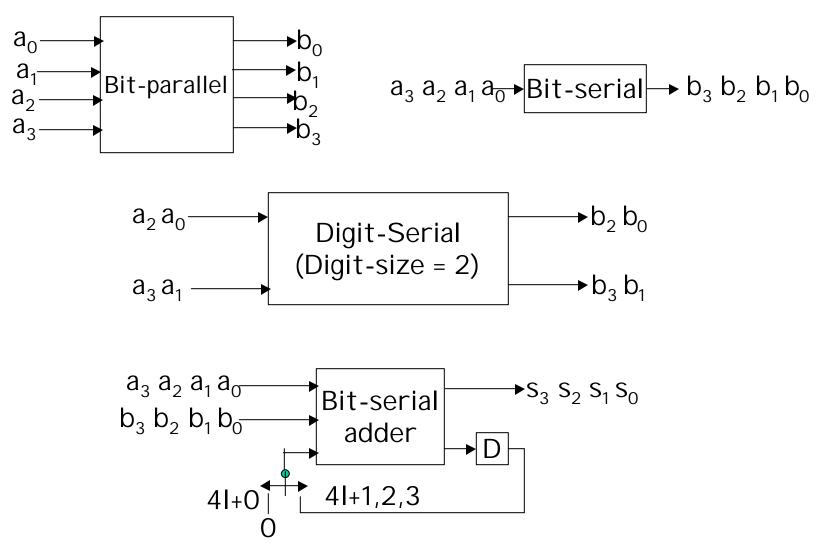
• Parallel Processing:

- ➤ Word- Level Parallel Processing
- ➤ Bit Level Parallel processing
 - ❖Bit-serial processing
 - ❖Bit-parallel processing
 - ❖Digit-serial processing





Bit-Level Parallel Processing



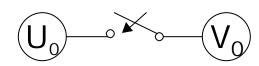
- The following assumptions are made when unfolding an edge U→V :
 - ➤ The wordlength W is a multiple of the unfolding factor J, i.e. W = W'J.
 - > All edges into and out of the switch have no delays.
- With the above two assumptions an edge U→V can be unfolded as follows:
 - Write the switching instance as

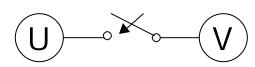
$$WI + u = J(W'I + \lfloor u/J \rfloor) + (u\%J)$$

➤ Draw an edge with no delays in the unfolded graph from the node $U_{u\%J}$ to the node $V_{u\%J}$, which is switched at time instance (W'I + $\lfloor u/J \rfloor$).

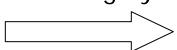
Example:

$$41 + 3$$

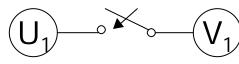




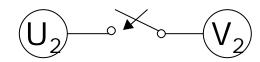
Unfolding by 3



$$41 + 0.2$$



$$41 + 3$$



To unfold the DFG by J=3, the switching instances are as follows

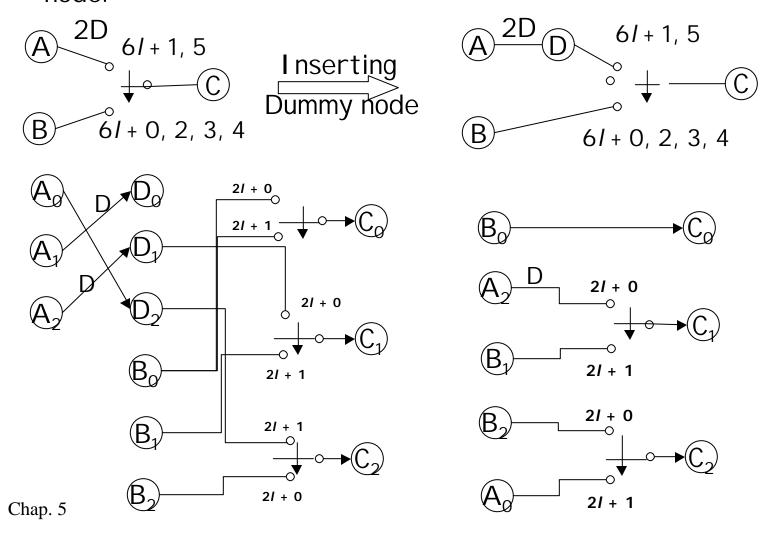
$$12I + 1 = 3(4I + 0) + 1$$

$$12I + 7 = 3(4I + 2) + 1$$

$$12I + 9 = 3(4I + 3) + 0$$

$$12I + 11 = 3(4I + 3) + 2$$

 Unfolding a DFG containing an edge having a switch and a positive number of delays is done by introducing a dummy node.



12

- If the word-length, W, is not a multiple of the unfolding factor, J, then expand the switching instances with periodicity lcm(W,J)
- Example: Consider W=4, J=3. Then lcm(4,3) = 12. For this case, 4l = 12l + {0,4,8}, 4l+1 = 12l + {1,5,9}, 4l+2 = 12l + {2,6,10}, 4l+3 = 12l + {3,7,11}. All new switching instances are now multiples of J=3.