Chapter 6: Folding

Keshab K. Parhi

e Folding is a technique to reduce the silicon area by time-
multiplexing many algorithm operations into single functional
units (such as adders and multipliers)

/Jin) /k(n)
am) R ()
N N

(a)

 Fig(a) shows a DSP program : y(n) = a(n) + b(n) + c(n) .

 Fig(b) shows a folded architecture where 2 additions are
folded or time-multiplexed to a single pipelined adder
One output sample is produced every 2 clock cycles P input
should be valid for 2 clock cycles.

e In general, the data on the input of a folded realization is
assumed to be valid for N cycles before changing, where N
IS the number of algorithm operations executed on a single
functional unit in hardware.

Folding Transformation :

Nl +w

(U)— w(e)D —(v) @—' R,D D, (U>V) J@

(a) (b)

Nl + u and NI + v are respectively the time units at which I-th
Iteration of the nodes U and V are scheduled.
e u and v are called folding orders (time partition at which the
node is scheduled to be executed) and satisfy O £ u,v £ N-1.
* N is the folding factor i.e., the number of operations folded to
a single functional unit.
e H, and H, are functional units that execute u and v respectively.
» H,Is pipelined by P, stages and its output is available at NI + u + P,.
e Edge U® V has w(e) delays P the I-th iteration of U is used by
(I + w(e)) th iteration of node V, which is executed at N(I + w(e))
+ v. So, the result should be stored for :
D-(U® V) = [N(l + w(e)) + v] - [NI + P, + u]
P D(U®V)=Nw(e)-P,+v-u (independent of |)
Chap. 6 3

e Folding Set : An ordered set of N operations executed by the
same functional unit. The operations are ordered from O to N-
1. Some of the operations may be null. For example, Folding
set S;={A,0,A,} is for folding order N=3. A, has a folding
order of O and A, of 2 and are respectively denoted by (S,]0)
and (S,|2).

e« Example: Folding a retimed biquad filter by N = 4,

(8413) (S411)
IN : 5 ()
1 2
a D b
(8112) X2 @ 61D (Si4)
3 4
(SJ0) (S,12) d
D c D

(S43) (S41)
Addition time = 1u.t., Multiplication time = 2u.t., 1 stage pipelined
adder and 2 stage pipelined multiplier(i.e., P,=1 and P,,=2)

The folding sets are S, ={4, 2, 3,1} and S, = {5, 8, 6, 7}
Chap. 6 4

{0,2}0{3? IEY)

{p.q} denotes 41 +p and 41 +q

Folding equations for each of the 11 edges are as follows:

D.(1®2)=4(1)-1+1-3=1

D.(1®6)=4(1)-1+2-3=2
D.(1®8)=4(2)-1+1-3=5
D.(4®2)=4(0)-1+1-0=0
D.(6®4)=4(1)-2+0-2=0
D.(8®4)=4(1)-2+0-1=1

Chap. 6

D.(1®5)=4(1)-1+0-3=0
D.(1®7)=4(1)-1+3-3=3
D.(3®1)=4(0)-1+3-2=0
D.(5®3)=4(0)-2+2-0=0
D(7®3)=4(1)-2+2-3=1

e Retiming for Folding :
— For a folded system to be realizable D.(U->V) 3 O for all
edges.

- If D' (U~>V) is the folded delays in the edge U->V for
the retimed graph then D'-(U->V) 3 0.

So,
Nw.(e) -P,+v-u3 0 ..wherew.(e)=w(e)+r(V)-r)
b N(w(e) + r(V)-r(U))-P, +v-u3 0
P r(U)-r(V) £ D.(U>V) /N
P r(U)-r(v) £&.(U>V) /Nu (since retiming values are
integers)

Chap. 6

e Register Minimization Technique : Lifetime analysis is used for
register minimization techniques in a DSP hardware.

e A ‘data sample or variable’ is live from the time it is produced
through the time it is consumed. After that it is dead.

e Linear lifetime chart : Represents the lifetime of the variables in a
linear fashion.

 Example
P cycle an8; a;bgb1b2Cy ¢ Cy #live
0
1
cycle # live 2 cycle # live
o —abc g 3 0 boco
1 1 4 1 1
2 2 5 2 2
3 2 6 3 2
4 2 7 4 2
5 2 8 5 2
6 2 9 6 2+0=2
7 2 7 2+1=3

==
]
=T SN N Y O TR R N T N N T 8 T N Y N T Y N Y S ST e

Note : Linear lifetime chart uses the convention that the variable is not
live during the clock cycle when it is produced but live during the clock
cycle when it is consumed. 7

 Due to the periodic nature of DSP programs the lifetime chart can
be drawn for only one iteration to give an indication of the # of
registers that are needed. This is done as follows :

» Let N be the iteration period

> Let the # of live variables at time partitions n 3 N be the # of
live variables due to O-th iteration at cycles n-kN for k23 0. In
the example, # of live variables at cycle 7 3 N (=6) is the sum
of the # of live variables due to the O-th iteration at cycles 7

and (7 -16)=1,whichis2+1=3.

e Matrix transpose example :

I[hlg|fle]d|c|b]|a
—>

Chap. 6

Matrix
Transposer

I|flclhlelblgld]a

>

Sample Ti Zlout Taire Tout Life
a 0 0 0 4 0>4
b 1 3 2 7 1>7
C 2 6 4 10 2->10
d 3 1 -2 5 325
e 4 4 0 8 4->8
T 5 7/ 2 11 5211
g 6 2 -4 6 6>6
h 7 5 -2 729
i 8 8 0 12 8>12
cycle 5 b ¢ dﬂfgh i #live
**To make the system causal -:; ?
a latency of 4 is added to > >
the difference so that 3 g 3
T, IS the actual output 5 . 4
I 6 4
time. : | :
8 * 4
9 A4+0=4
10 3+]:4
11 * 2+2=4
12 — 143=4

Chap. 6

e Circular lifetime chart : Useful to represent the periodic
nature of the DSP programs.

 Ina circular lifetime chart of periodicity N, the point
marked i (O£1 £ N - 1) represents the time partition i and all
time instances {(NI + i)} where | is any non-negative integer.

« For example : 1T N = 8, then time partition i = 3 represents
time instances {3, 11, 19, ...}.

e Note : Variable produced during
time unit j and consumed during
time unit k is shown to be alive
from ‘) + 1 to ‘K.

e The numbers in the bracket in
the adjacent figure correspond
to the # of live variables at each
time partition.

Chap. 6 10

Forward Backward Register Allocation Technique :

cycle | input | R1 R2 R3 R4 |output cycle | input | R1 R2 R3 R4 |output
0 a 0 a
1 b a 1 b a
2 c R b I~ a 2 C ~ b "~ a
3
4 a
5 d
6 g
7 b
3 e
9 h
10 C
11 f

Note : Hashing is done to avoid conflict during backward
allocation.
Chap. 6

Steps for Forward-Backward Register allocation :

Chap. 6

Determine the minimum number of registers using lifetime
analysis.

Input each variable at the time step corresponding to the
beginning of its lifetime. 1T multiple variables are input in a
given cycle, these are allocated to multiple registers with
preference given to the variable with the longest lifetime.

Each variable is allocated in a forward manner until it is dead
or it reaches the last register. In forward allocation, if the
register i holds the variable in the current cycle, then
register i + 1 holds the same variable in the next cycle. I (i +
1)-th register is not free then use the first available forward
register.

Being periodic the allocation repeats in each iteration. So
hash out the register R; for the cycle | + N if it holds a
variable during cycle I.

For variables that reach the last register and are still alive,
they are allocated in a backward manner on a first come first
serve basis.

Repeat steps 4 and 5 until the allocation is complete.

12

« Example : Forward backward Register Allocation

Chap. 6

cycle | input R1 R2 R3 |output cycle | input R1 RZ R3 |output
) a 0 a
1 b a 1 b a
> B b e a > B b e a
3 b N a 3 [\ a
4 C ™~ b 4 c @ ™~ b a
5 B c 5 B c b/
6 \c 6 \c - b
F - \@) c 7 - @ \@ b,c
ol +14
o a.b
6l+1
IN ri [2502, R2 R3 Xo c
1614034

13

e Folded architecture for matrix tranposer :

OUT
4
9+6 T 7 T 91+41.2,34.7.8
9L0.5
N o—» RI R2 ><c R3 R4
19146 [91405

Chap. 6

e Register minimization in folded architectures :
» Perform retiming for folding
» Write the folding equations
» Use the folding equations to construct a lifetime table

» Draw the lifetime chart and determine the required
number of registers

» Perform forward-backward register allocation

» Draw the folded architecture that uses the minimum
number of registers.

Node Tin2 Tout

eExample : Biquad Filter 1 4->9

»Steps 1 & 2 have already been done. 2 --
>Step 3:The lifetime table is then 3 323
constructed. The 2" row is empty as 4 121
D-(2->U) is not present. 2 jjj
Note : As retiming for folding ensures - e
causality, we need not add any latency. s 354

cyclel 2 3 4 5 6 7 &8 #live
0 0
L AY4 0
]]] 2 - X 0
»>Step 4 : Lifetime chart is j X v 1 b
- * +0=
constructed and registers 5 - l L +0=1
i b 240=12
determined. ; el
& l+1=2
9 —e l4+1=12
cycle | input R1 R2 output
0
1
2
»Step 5 : Forward-backward 3 -
register allocation 2 | =, n,
5 L
6 nb n,
7 g,
8 ‘Si’n—b
9 @ n,

Chap. 6 16

»Folded architecture is drawn with minimum # of registers.

a b ¢ d

© Rl

Chap. 6

