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| ntroduction

o Fast Convolution: implementation of convolution algorithm using fewer
multiplication operations by algorithmic strength reduction

o Algorithmic Strength Reduction: Number of strong operations (such as
multiplication operations) is reduced at the expense of an increase in the
number of weak operations (such as addition operations). These are best suited
for implementation using either programmable or dedicated hardware

« Example: Reducing the multiplication complexity in complex number
multiplication:

— Assume (atjb)(c+dj)=etjf, it can be expressed using the matrix form, which
requires 4 multiplications and 2 additions: o R
éell & -duéu

el ¢ I U
eff & cr'e
— However, the number of multiplications can be reduced to 3 at the expense of 3
traadditions by using: <
extra ITToNS Dy using IIaC— bd :a(C— d)+d(a— b)
|
tad+bc=Db(c+d)+d(a- b)
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— Rewrite it into matrix form, its coefficient matrix can be decomposed as
the product of a 2X3(C), a3X3(H)and a 3X2(D) matrix:
&c-d 0 0pél 0
_eéeu_é 0 Iuaga - g.éau
S=e07g) 4 1ng 0 c+d o@xg) 1 l:ng)h:,_c:xH xD XX
e0 O dge -1d
* Where C is apost-addition matrix (requires 2 additions), D is a pre-addition
matrix (requires 1 addition), and H is adiagonal matrix (requires 2 additions to
get its diagonal elements)
— $0, the arithmetic complexity isreduced to 3 multiplications and 3
additions (not including the additions in H matrix)

* Inthis chapter we will discuss two well-known approaches to the design of
fast short-length convolution agorithms: the Cook-Toom algorithm (based
on Lagrange Inter polation) and the Winograd Algorithm (based on the

Chineseremainder theorem)
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Cook-Toom Algorithm

e A linear convolution algorithm for polynomial multiplication based on
the Lagrange I nterpolation Theorem

» Lagrange Interpolation Theorem:

L et bo,....,bn beaset of I +1 distinct points, and let f (b|) ,fori
=0, 1, ..., n begiven. There is exactly one polynomial f ( p) of degree n or less

that has value f (bi ) when evaluated at bi fori=0,1,...,n Itisgiven by:

C’)(p-bn
o<b - b))

n

t(p) = a f(b;) =
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* Theapplication of Lagrange interpolation theorem into linear
convolution

Chap. 8

Consider an N-point sequence h = {ho , h1’---’ hN-l}

and an L-point sequence X = {XO’Xl""’ XL-l}. The linear

convolution of h and X can be expressed in terms of polynomial
multiplication as follows: S( p) = h( p) XX( p) where

h(p)=h,_,p""*+..+hp+h
X(P) =X, _,p- 4.+ X P+ X,
S(P) =S .n-2P

The output polynomial S( p) has degree
L+ N-1

different points.

L+N-2
+.+Sp+s,

L+ N- 2

and has



(continued)

S( p) can be uniquely determined by its values at L+N-1
different points. Let {bo’blv--’ b|_+N-2} be L+N-1
different real numbers. If S(bi) for | = {O,l,---, L+ N - 2} are

known, then S( p) can be computed using the Lagrange interpolation
theorem as:

.. O(-b)

s(p) = a s(b )CJSI(b

It can be proved that this equatlon is the unique solution to compute linear

s(b,)

convolution for S( p) given the values of for

i ={01,...,L+N- 2}
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e Cook-Toom Algorithm (Algorithm Description)

1. Choose L + N - 1 different real numbers by, b, b ..,
2. compute h(b,) and x(b,) , for i ={0,%%L + N - 2}
3. Compute S(b;) =h(b;)*xx(b,) | for i ={O,1,><><>,<L + N - 2}

. O(p-b)

(P = 3 s(b )5<b »

4. compute S(P) by using

e Algorithm Complexity
— Thegoal of the fast-convolution algorithm is to reduce the multiplication
complexity. So, if bi "s(i=0,1,...,L+N-2) are chosen properly, the
computation in step-2 involves some additions and multiplications by
small constants

— The multiplications are only used in step-3 to compute s(bi). So, only
L+N-1 multiplications are needed
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— By Cook-Toom algorithm, the number of multiplicationsis reduced from
O(LN) to L+N-1 at the expense of an increase in the number of additions

— An adder has much less area and computation time than a multiplier. So,
the Cook-Toom algorithm can lead to large savings in hardware (VLSI)
complexity and generate computationally efficient implementation

o Example-1: (Example8.2.1, p.230) Construct a 2X 2 convolution algorithm using
Cook-Toom algorithm with b={0,1,-1}
— Write 2X2 convolution in polynomial multiplication form as
(P)=h(p)x(p), where h(p) =hy+hp X(p) =X, +xp

. _s(p)=s,+sptsp’ N
— Direct implementation, which requires 4 multiplications and 1 additions,

can be expressed in matrix form as follows:

s g, Ou
8. U_8, . 0%
g5~ e Moy, u
~ - A . 1
gs,0 80 hy
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 Example-1 (continued)

— Next we use C-T algorithm to get an efficient convolution implementation
with reduced multiplication number

b, =0, h(by)=hy, X(by) =X,
b, =1, h(b,)=h,+h, x(b;)=x,+X
bz =2, h(bz) = ho ) hl’ X(bz) =X X
— Then, s(bo), s(b1), and s(b2) are calculated, by using 3 multiplications, as
s(by) = h(by)x(by) s(by) =h(b,)x(b;) s(b,)="h(b,)x(b,)
— From the Lagrange I nterpolation theorem, we get:
- bl)
1° bz)

_ (P- b,)(p- b,) (p- b,

s(p) = s(by) (b,- b,)(by, - b2)+S(bl) (b,- by
(P- by)(p- by)
+S(b2)(b2- b,)(b,- b,)

= s(by) + p(X2=SCady 4 peg(n ) 4 ST,

)(p
)(b

=S, + ps, + p°s,
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e Example-1 (continued)
— The preceding computation |eads to the following matrix form

és,0 €1 0 0w és(hy) u
e. u_ e u., e u
Bs,ff &1 1 19g és(b,)/2¢9
¢l 0 O0u éh(b,) 0 0 0 éx(bg)u
_ e u, e u. e u
_éo 1 -1@><(:a 0 h(b,)/2 0 g xex(by) g
g-1 1 1ge O 0 h(b,)/28 &x(b,)f
€1 0 O0u éh, 0 0 ué ou
_é a_e a._é U, XU
-1 1 19 g0 0 (h, - h)/2g & - 1§ !

— The computation is carried out as follows (5 additions, 3 multiplications)

1. Hy=h, H,= h*h, H, = M-y 2 " (precomputed)

2
2 Xo = Xo» X=Xy X, X, =X, - X
3. S, =H/X,, S =HX, S,=H,X,
4 So = Sp S=S-S5,, $=-5+5+S,
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— (Continued): Therefore, this agorithm needs 3 multiplications and 5
additions (ignoring the additions in the pre-computation ), i.e., the number
of multiplicationsisreduced by 1 at the expense of 4 extra additions

— Example-2, please see Example 8.2.2 of Textbook (p.231)
e Comments

— Some additionsin the preaddition or postaddition matrices can be
shar ed. So, when we count the number of additions, we only count one
instead of two or three.

— If wetake ho, h1 asthe FIR filter coefficients and take xo, x1 as the signal
(data) sequence, then the terms Ho, H1 need not be recomputed each
time the filter is used. They can be precomputed once offline and stored.
So, we ignor e these computations when counting the number of
operations

— From Example-1, We can understand the Cook-Toom algorithm as a
matrix decomposition. In general, a convolution can be expressed in
matrix-vector forms as és, U {eho 0 v S0 of ST ox

é.u_=¢ u, U =

ehu™ e Tog,
&s,il 80 hpg
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— Generally, the equation can be expressed as

S=T>x=CH>D>x
* Where C isthe postaddition matrix, D isthe preaddition matrix, and H isa
diagonal matrix with Hi, i =0, 1, ..., L+N-2 on the main diagonal.

— Since T=CHD, it implies that the Cook-Toom algorithm provides a way
to factorize the convolution matrix T into multiplication of 1 postaddition
matrix C, 1 diagonal matrix H and 1 preaddition matrix D, such that the
total number of multiplications is determined only by the non-zero
elements on the main diagonal of the diagonal matrix H

— Although the number of multiplications is reduced, the number of
additions has increased. The Cook-Toom algorithm can be modified in
order to further reduce the number of additions
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Modified Cook-Toom Algorithm

e The Cook-Toom algorithm is used to further reduce the number of
addition operations in linear convolutions

L+N-2

Define Sl(p) = S(p) B S_+N-2 P . Notice thet the
degree of S( p) IS L+N- 2 and S_+N- 2 isits highest order
coefficient. Therefore the degreeof S (P) is L+ N - 3.

* Now consider the modified Cook-Toom Algorithm
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 Modified Cook-Toom Algorithm

1 Choose L+ N- 2 different real numbers by, by, >%b, .\ -

2. Computeh(b) and x(b,) , for i ={01»xL+N- 3

3 Compute S(b) =h(b)x(b,), for i ={01»xL+N- 3

4. Compute s(b) =9b,)- .n.0, S , for i :{O,l,><><>,<L+ N - 3}
Le\-2 O(p- b;)

S D
(P = a s(b )O(b b)

5. Compute S (P) by using

L+N-2

6.  Compute S(P) =S(P) +S.in.2P
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o Example-3 (Examples.2.3, p.234) Derive a 2X 2 convolution algorithm using the
modified Cook-Toom agorithm with b={0,-1} ,
Consider the Lagrange interpolation for S'( IO) = S( p) - hxi P~ a

{bo :O’blz'l}-

Frs find S (0;) = h(b;)Xx(b;) - hlxlbi2

b,=0,  h(b)=h,  x(by)=x

b,=-1 h(b)=h-h, xb)=x%-x%

s'(b,) = h(bo)x(b,) - hxby” =heX,

s'(b,) = h(by)x(b,) - hxb,* = (hy - h)(% - X) - hX,

» Which requires 2 multiplications (not counting the hix1
multiplication)

— Apply the Lagrange interpolation algorithm, we get:

' o (p' bl) ' (p' bo)
(P =S(0) 5 +S(0)

chep.s =3(by) + P(S(bo)- S(by) .

— and




 Example-3 (cont’d)

Therefore, s(p) =s'(p)+hxp* = STSP+ s,p’
Finally, we have the matrix-form expression:

Notice that

— Therefore;
65,0 €1

é u_é
¢Sy e
es,d €0
él

_é
= él
g0

Chap. 8

és,u €l 0 0u és'(by)u
é_u_é a_é._. U
gs,g €0 O 1g & hx, @
és'(by)u é1 0 00 és(by)u
2s'(by) =80 1 - 1axgs(b,);
h,x, 8 €0 0 14§ ghx 8
O Ouél 0 Ou es(byu
u_é u_é 0

-1 ngéo 1 - 1@"§3(b1)@
O 1g 80 O 1¢ ehx
0O Ou éh, 0 Ou él

ua_é ua. é

= 1 1uxé0 hO- hl Ol]xél
0O 1¢g g0 0 h,g €0
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 Example-3 (cont’d)

— The computation is carried out as the follows:
1. H,=h, H,=h,- h, H,=h  (pre-computed)
2. Xy =X, X=Xy - X, X, =X
3. S, =H/X,, S =H. X, S,=H,X,
4. So = o S=S-S+S;, S, =S

— Thetotal number of operations are 3 multiplications and 3 additions.

Compared with the convolution algorithm in Example-1, the number of

addition operations has been reduced by 2 while the number of
multiplications remains the same.

« Example-4 (Example 8.2.4, p. 236 of Textbook)

e Conclusion: The Cook-Toom Algorithm is efficient as measured by the
number of multiplications. However, as the size of the problem increases, it is
not efficient because the number of additions increases greatly if b takes
values other than {0, 1, £2, £4} . This may result in complicated pre-addition
and post-addition matrices. For large-size problems, the Winograd algorithm is
more efficient.
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Winograd Algorithm

e TheWinograd short convolution algorithm: based on the CRT (Chinese

Remainder Theorem) ---It's possible to uniquely determine a nonnegative integer given
only its remainder with respect to the given moduli, provided that the moduli are relatively
prime and the integer is known to be smaller than the product of the moduli

e Theorem: CRT for Integers

Given Q = Rﬂ [C] (represents the remainder when C s divided by m ), for

1=01...K, whee M ae moduli and are reativdy prime then

o 6 2
c=¢a quMi;'mdM e M=O M M =M/m.
=0

and N isthe soiution of N;M; +nmM =GCD(M;,M) =1 ovided
et OEC<M
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« Theorem: CRT for Polynomials

Given ¢”(p) =R, (pc(p)], for i=0, 1, ...k, where m?(p) are
) )
relatively prime, then c(p) = cd ¢ (P)N® (p)M @ (p)2modM (p), where
€i=0 1]
M(p) = Oikzom(i)(P), M ©(p) =M (p)/m"” (p) , and NV (p) isthe solution of
N®(p)M© (p) +n® (p)m®»(p) =GCD (M “ (p),m" (p)) =1 Provided that the
degree of ¢(p) islessthan the degree of M (p)
« Example-5 (Example 8.3.1, p.239): using the CRT for integer, Choose
moduli m=3, m=4, m,=5. Then M =mmm,=60and M, =M/m.
Then:

m=3 M,=20, (-120+7(3=1
m=4, M, =15 (-D15+(4)4=1

m=5 M,=12 (-2)12+(5)5=1
— whereN; and N are obtained using the Euclidean GCD algorithm. Given
that the integer ¢ satisfying 0£c< M, let ¢ = Rn-[C]'

Chap. 8 20



 Example-5 (cont’d)
— Theinteger c can be calculated as

k C
c=CA GNM, ZmodM = (- 20* ¢, - 15* G, - 24* c,) mod60
ei=0 9

- Forcsll ¢ =R(17)=2 ¢=R@l7)=1 ¢=R(17)=2
¢ =(- 20* 2- 15*1- 24* 2)mod60= (- 103 mod60=17

 CRT for polynomials: The remainder of a polynomial with regard to modulus
p' + f(p), where deg( f (p)) £i - 1, can be evaluated by substituting P by
- f(p) inthe polynomial
« Example-6 (Example 8.3.2, pp239)
(@). R[5 +3x+5|=5-2)?+3-2) +5=19
(). R, |5¢+3x+5=5-2)+3x+5=3x- 5
©. R.,., 5x2+3x+5]:5(- X- 2)+3x+5=-2x-5
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* Winograd Algorithm

— 1. Choose a polynomial M(P) with degree higher than the degree of
h( p)x(p) and factor it into k+1 relatively prime polynomials with real
coefficients, i.e, m(p)=m" (p)m™(p)»em™(p)

— 2.Let M (p) =m(p)/m" (p). Use the Euclidean GCD agorithm to
solve N®(p)M “(p) +n"(p)m™(p) =1 for N"(p) .

_ 3. compute: "(P) = h(p)mod m” (p), X (p) = x(p)mod m” (p)
for 1 =0,1xxk

— 4. Compute: sV (p) =h”(p)x"(p)mod m” (p),  for i=0.1%k
— 5. Compute s(p) by using:
s(p) =@ s”(P)N(p)M © (p)mod m”(p)

i=0

Chap. 8
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o Example-7 (Example 8.3.3, p.240) Consider a 2X3 linear convolution asin
Example 8.2.2. Construct an efficient realization using Winograd algorithm

with

Chap. 8

m(p) = p(p- H(p* +1)
Let: m?(p)=p, m(p)=p-1 m?(p)=p*+1
Construct the following table using the relationships M @ (p) = m(p)/m™ (p)

and  NOpIM O (p)+nD (p)mP(p)=1 for =012

| mY(p) M (p) n" (p) N (p)

0 P p’- p°+p-1| p°-p+l -1

1) et pP+p | -3lpP+p+2) | 3

2| p*+l p’- p -3(p-2) | 3(p-1)

Compute residuesfrom h(p) =h, +hp, X(p) =X, +Xp+ X p*
h® (p) = hy, XV (p) = %

) Wmoheh xR R e

h?(p) =h +hp, X (P)=(X - X,) +X.P
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o Example-7 (cont’d)
S(O)(p) = hoxo = SO(O), S(l)( p) = (ho + hl)(xo + %, + Xz) — SO(1)
s@(p) = (h, +h,p)((X, - X,) + X p) mod( p2 +1)
= hy(X, - %,)- hx + (hXx +h (X - X,)p=5" +5°p

— Notice, we need 1 multiplication for s (p), 1 for s” (p), and 4 fors'” (p)
— However it can be further reduced to 3 multiplications as shown below:

) . éh, 0 0 U éx,+ X - X0
g5 0. g 0 -lie N 4
€ (2)9'31 -1 oM g0 MNo-h O gX8 X~ X2 g
0 G0 0 h+hiE x A

s(p) = & <" (p)N® (p)M ©(p) mod m® (p)

i=0
= sO(pp7- 7+ p- )+ S (2 p)+ SR (7 2p7 4 p)
mod( p*- p*+ p®- p)
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o Example-7 (cont’d)
— Substitutes@(p), s®(p), s (p) intoS(P)to obtain the following

table po pl pz p3
s, | -s,© s, C s, ©
s, [0 | 38
0 15,@ [ . 5,@ | 15,®
0 [ 3@ 0 [-35®

— Therefore, we have
(0)

és,u é1 0 O Ou €s,”’ U
é. u é ue, _ wu
ésll] — é' 1 1 1 1 l:l)(??SO l:'
é32 U é1 0 - 2 Ou ?%30(2)1}
é u é u € u
= ! v u = (2)
eS3u e- 1 1 1 - 1u @%Sl g
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e Example-7 (cont’d)

— Noticethat
€s, 20 é1 0 0 O
e u é
6+s,4_g0 1 0 0
iU &0 0 1 O
é2 0(2) u é
é%sl 9] 0 0 1 1

— S0, finaly we have:

és,u é1 O
é.u é
ésll.,.l:é 1 1
es;,u ¢1 0 -
é_u é
éS;0 e 1 O
é
é
x€
é
é
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o Example-7 (cont’d)
— Inthisexample, the Winograd convolution algorithm requires 5

multiplications and 11 additions compared with 6 multiplications and 2
additions for direct implementation

e Notes:

— The number of multiplicationsin Winograd algorithm is highly dependent
on the degree of each m"" (p). Therefore, the degree of m(p) should be as
small as possible.

— More efficient form (or amodified version) of the Winograd algorithm
can be obtained by letting deg[m(p)]=deg[s(p)] and applying the CRT to

s'(p)=s(p)- hy,x,..m(p)
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Modified Winograd Algorithm

— 1. Choose a polynomial M(P) with degree equal to the degree of S(P)
and factor it into k+1 relatively prime polynomials with real coefficients,
i.e, m(p)=m®(p)m?(p)>om™(p)

— 2.Let MO (p)=m(p)/m"(p), use the Euclidean GCD algorithm to
solve N (p)M ©(p) +n®(p)m®(p) =1 for NO(p) -

h"(p) = h(p)mod m*(p),  x®(p) =x(p)mod m"(p)

— 3. Compute: _
for 1 =0,1,»xxk

— 4. Compute: s’ (p) = h® (p)x" (p)mod m(p),  for i =0,1%xk
— 5. Computes'(p) byusing: , | | |
s'(p)=a s (PN (p)M?(p)mod m® (p)

i=0

— 6.Compute  S(p) =s'(p)+hy % _.m(p)

Chap. 8
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o Example-8 (Example 8.3.4, p.243): Construct a 2X 3 convolution algorithm
using modified Winograd algorithm with m(p)=p(p-1)(p+1)
~ Let m?(p)=p, mP(p)=p-1L m?(p)=p+1
— Construct the following table using the relationships M @ (p) = m(p)/m™ (p)
and N (p)M “(p)+n®(p)m®?(p) =1

| mY(p) M @ (p) n" (p) N (p)
0 P p°-1 P -1
1| p-1 p* + p - 3(p+2) 3

2 | p+l p’- p - +(p- 2) 1

— Computeresiduesfrom h(p) =h,+hp, X(p)=Xx,+Xxp+X,p*
h®(p) =h, x¥(p) = X,

j> h(p)=hy+h, xP(p)=x+x+X,
h®(p) =h,- h, X2 (P) = X% - Xt X,

s (p) =heXy, 5P (p) = (M, +h)(% + % +X%,),
s (p) = (hy - h)(% - % +X,)
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o Example-8 (cont’d)

— Sincethe degree of m" (p) isequal to 1, s'” (p) isapolynomial of
degree 0 (a constant). Therefore, we have:

s(p) =s(p) +hx,m(p)
[ SO p*+D)+2(p°+ p) + 557 (p° - p)+hx,(p*- p)]
=sO+p(ER- 0 hx,)+ p°(- SO+ +57) + p’(hx,)

— The algorithm can be written in matrix form as:

és,u é1 0 0 Ou és®u
a_u @ G & .w
eSig_e0 1 -1 -158% ¢
és,u &1 1 1 o0Uu es<22)t:|
e u é u e U
es; 0 0 0 0 1g ghxg
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o Example-8 (cont’d)
— (matrix form)

és,u él 0 0 0 u éh, 0 0 Ou
é.u é _ 40 € o+ hy U
ésll]:éo 1 1 1U><(:90 > hOh O@
6,07 6-1 1 1 00eé0 0 Ih 0
e u e u e u
aS;g a0 0 0 1 &0 0 0 h, (i

él O Ou .

e 0 €Xpu

<1 1 17 a 1

x? l;lxgxlljl

é1 -1 1u € -u

e u 8X

& 0 1j E*.H

— Conclusion: this algorithm requires 4 multiplications and 7 additions
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|terated Convolution

« |terated convolution algorithm: makes use of efficient short-length
convolution algorithmsiteratively to build long convolutions

* Does not achieve minimal multiplication complexity, but achieves a
good balance between multiplications and addition complexity

 Iterated Convolution Algorithm (Description)

— 1. Decompose the long convolution into several levels of short
convolutions

— 2. Construct fast convolution algorithms for short convolutions

— 3. Use the short convolution algorithmsto iteratively (hierarchically)
implement the long convolution

— Note: the order of short convolutions in the decomposition affects the
complexity of the derived long convolution
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o Example-9 (Example8.4.1, pp.245): Construct a4X4 linear convolution
algorithm using 2X2 short convolution

— Let h(p)=hy+hp+h,p>+h,p>, X(p) =X +XP+Xp°+Xp°
and s(p) = h(p)x(p)

— First, we need to decompose the 4X4 convolution into a 2X 2 convolution
- Define ' (p)=h,+hp, hi(p)=h,+hp
Xo(P) =X %P, X, (P) =X +Xp
— Then, we have:
i> h(p)=h'y(p)+h, (p)p°, ie,h(p)=h(p,q)=h,(p)+h,(p)g
X(p) = X, (P) + X, (P)p°, i.e,x(p)=x(p,q) =X, (P)+Xx,(P)g
s(p) =h(p)x(p) = h(p,q)x(p,q)
=[h'y () + 1, (p)a]{X, () + X, (P)q]
=y (P)X, () + [N (P)X: () + 1, (D)X, (P)]a+h, (P)X, ()
=S, (p)+s; (P)a+s, (p)a° =s(p,q)
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o Example-9 (cont’d)
— Therefore, the 4X4 convolution is decomposed into two levels of nested
2X2 convolutions

— Letusstart fromthefirst convolutions', (p) = h', (p) %X, (p) » we have:
o (p) %X, (p) © X, = (M, +1up) X%, +X,P)
=hy, +hxp? + pl(hy +h) (% ¥ ) Ty Y hx]

— We have the following expression for the third convolution:

:> s, (P) =N, (p) >, (p) ° h'X, =(hz;h3p)>(x >+ %3 P)
=h,X, +hp° ol + o+ Y- hxg - hx]
— For the second convolution, we m expression:
:> s.(P) =N, (p)>X1(P)+h:(P)>X, (P) ° hX;+hpX,
=[(hg+hy) XX+, ) - s hipx,

— multiplication Y: addition
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o Example-9 (Cont’d)
 For [(h'0+h'1)>(x'0+x'1)], we have the following expression:
) () () =[(hy +hy) + plhy + )P[0 +%,) + plx, +)]
= (M, +h,) (%, +%,) + p*(h, +hy) XX +X)
+p[(h+h +h +h) X% +§]¥§2 +X3)
L ()06 130) 1 (R + R0 )]

Thisrequires 9 multiplications and 11 additions

— If werewrite the three convolutions as the following expressions, then we can get
the following table (see the next page):

h'o X, © & + pa, + p°a
h', x',° b, + pb, + p°h,
(hIO+hll)>(XlO+X'1)O Cl + pCZ + p2C3
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o Example-9 (cont’d)

p® | p* | p* | P | p* | PP
a, a, d, b, b, bs
C, C, Cs
B, |[-b, |- b,
- a - a, - a5
A 4 4 Total 8 additions here

— Therefore, the total number of operations used in this 4X4 iterated
convolution algorithm is 9 multiplications and 19 additions
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Cyclic Convolution

e Cyclic convolution: aso known as circular convolution
o Letthefilter coefficientsbe h :{h) l'&xxxml} , and the data

sequencebe x={x_, x ,%x .}
— The cyclic convolution can be expressed as

s(p) =hO,x =[h(p) (p)|mod(p" - 1)

— The output slampl esare given by
n-

SI - é h((i_k))xk, | = O,].,>°°,<n' 1
k=0

« where ((| - k)) denotes (i - k) modn
e The cyclic convolution can be computed as alinear convolution
reduced by modulo P" - 1. (Notice that there are 2n-1 different output
samplesfor thislinear convolution). Alternatively, the cyclic
convolution can be computed using CRT with m(p) = p" - 1, which
Ismuch simpler.
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o Example-10 (Example 8.5.1, p.246) Construct a 4X4 cyclic convolution
algorithm using CRT with m(p) = p*- 1=(p- )(p+D(p°+1)

Chap. 8

L et h(p):ho+hlp+h2p2+h3p3, x(p):xo+x1p+x2p2+xsp3
Lt mP(p)=p-1 mP(p)=p+l m?(p)=p°+1
Get the following table using the relationships M © (p) = m(p)/m® (p)

and N"(p)M“(p)+n®(p)m*(p)=1

| mY(p) M® (p) n"(p) N (p)
O pP-1 | p+p’+p-1|-4(p"+2p+3 | %

1| p+l | p-prep-1 | ip’-2p+g | -3

2| p'+l p°-1 > "3
Compute the residues

h®(p)=hy+h +h,+h, :ho(O)’
h®(p)=hy- h+h,- b =h,”,
h?(p) =(hy- h)+ (- hy)p=h> +hp



e Example-10 (cont’ d) = multiplication
XO(P) =X+ X, + X, + X3 = X',
X(l)(p) =X Xt X - X3 = Xo(l)v
x?(p) = (Xo i X2)+ (Xl i X3)p = Xo(Z) + )(1(2) P
:> S(O) ( p) — h(O) ( p) XX(O) ( p) — ho(o) 0) _ SO(O)
S(l) ( p) h(l) ( p) xx(l) ( p) ho(l) D — SO(1)
A (p) =52 + sfz’ p=|h® (p)=x (p)] mod(p? +1)

e (ho(z) ><xo - ’99(2)) N p(ho(z) (2) +hl(2)Xo(2))

SO(2) — h (2) hl(Z) (2) — hO(Z) X, (2) 4 X h (2 4 hl(2)
(2) — ho(2) 1(2) + hl(Z) (2) — h0(2) (2) 4 )(1(2) + h1(2) _ hO(Z) Xo( )’

— or in matrix-form

2 - . ény? 0 0 0 ex®+xu
eSo U e 0 - 1l,Jx§ 0 hl(2) - h® 0 uxg x(2) U
Sl(2) U SL 1 0 H e 0 u-e 0 u
e & 2 L h@0 & «2 (
& 0 0 h,™ +h H& X H

— Computations so far require 5 multiplications

Chap. 8 39



e Example-10 (cont’ d)
— Then 2 | | |
s(p)=a s” (PN (pIM Y (p) modm" (p)
i=0
=[50 (5% 4 0 (20 50 () 47 ()

1

© (2 © & 4@ 0 O (2
— | S 1% S % 48 2% S S
- +4+2)+p(4 +2)+p(4+4 2)

4 4
rplis) - 150 - 197)

— S0, we have
e @ 11 00 &s0
28135 -1 0 13){2%38’3
G @ 1 -1 00 s
S0 & -1 0 -1f gs?g
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Example-10 (cont’ d)

— Notice that:

&0 60 0 0 0 Ou

e u é U

éﬁsél)@:gO 100 0g

ag’i @ 0 1 0 -10

€ u

85 @ 0 1 1 0g
ézhéo) O 0
g0 h 0
€0 0 in?
é 2
60 0 0 3
€0 0 O

Chap. 8
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e
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e Example-10 (cont’ d)
— Therefore, we have

Chap. 8

1 1
N

és,u é1 1 1
é. u é
eSsig_et -1 1
észg (:91 1 -1
é u é
6S;0 e -1 -1
Ahg+hy +h; +hs
g 2
& 0
e 0
é
a 0
& 0
él 1 1
é
é1 -1 1
ée1r 1
510
€0 1 O

0 - 1u
U
1 Ol;|><
0 10
u
-1 0§
0
hg - hy+hy- hsg
4
0 o
0
0
1o
1Y eXo U
S T0 €y u
- 1ax€ i1u
u ex,u
Oge u
e”s3 U
_1H

0
0
0

- hg+h;+h,- hg

2

0

o O O O

hg +hy - hy- hg

7

(e e e e ey e\ en\Y e

X
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e Example-10 (cont’ d)
— Thisalgorithm requires 5 multiplicationsand 15 additions

— The direct implementation requires 16 multiplications and 12 additions
(see the following matrix-form. Notice that the cyclic convolution matrix
Is acirculant matrix)

és,u éh, h; h, huo éx,u
é._u é u é_ u
g3t Mo N qzaxéxlu
es,u €en, n nh, nhu ex,u
eu e° 0 e "
ess u ens 2 N, ’10 u exs u

« An efficient cyclic convolution algorithm can often be easily extended
to construct efficient linear convolution

o Example-11 (Example8.5.2, p.249) Construct a 3X3 linear convolution
using 4X4 cyclic convolution algorithm
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 Example-11 (cont’ d)
_ Let the 3-point coefficient sequence be h ={h,,h,, L}, and the 3-point
data sequence be X ={XO, X X,
— First extend them to 4-point sequences as.

h={h,h,h0, x={x,%%.0

— Then the 3X3 linear convolution of hand x is

é h,X% u ,

& U é hx +thx

e orR g & othx
hxx=énx, +hx +hxU hO,x=¢ /

é a &, +hx +hx

& hxthx 6 '

8 hx H

— The 4X4 cyclic convolution of hand x, i.e. NO,X, is:
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 Example-11 (cont’ d)
— Therefore, we have S(P) = h(p) Xx(p) = hO, X+ h,x,(p*- 1)

— Using the result of Example-10 for hO 4 X, the following convolution
algorithm for 3X3 linear convolution is obtained:

és,u €1 1 1 0O -1 -1y
é.u & f
aS g (:91 1 1 1 0 Ou
és,u=€e1 1 -1 0 1 Ou
é- U € u
ésgu @1 -1 -1 -1 O G
és,1 80 0 O O 0 1§

(continued on the next page)
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 Example-11 (cont’ d)

Chap. 8

X

@>D> D> D> D> D> D> D> (D @ (D> (D> (D> (D> (D> (D> (D> (D

X

V4

ho +h; +hy

e =

o O

4

O O O O O

S r O B

0 0 0
LA 0 0
ho - h,
0 Do T 0
- hg+h;+h,
0 0 .
0 0 0
0 0 0
L
1 U
U éx,u
- 10 a2 9y
axsx, U
-1 &Y
O l:l @XZH
U
19

o O O O O
(@ N el j any any any e ey any e

-y
N



Example-11 (cont’ d)
— 90, thisagorithm requires 6 multiplications and 16 additions

Comments:
— Ingenera, an efficient linear convolution can be used to obtain an
efficient cyclic convolution algorithm. Conversely, an efficient
cyclic convolution algorithm can be used to derive an efficient

linear convolution algorithm
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Design of fast convolution algorithm by
Inspection
* When the Cook-Toom or the Winograd algorithms can not generate an

efficient algorithm, sometimes a clever factorization by inspection may
generate a better algorithm

o Example-12 (Example 8.6.1, p.250) Construct a 3X3 fast convolution
algorithm by inspection
— The 3X3 linear convolution can be written as follows, which requires 9
multiplications and 4 additions

&u é  hx U

e u
eS.Lu é hlxo+hoX1 @
%U—@nzwnxwmle}
e e u
g%g a hx+thx G
H 8 h, X, H
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 Example-12 (cont’ d)
— Using the following identities:

§ =hx, +hy 2% =y +1) X% +%)- % - hix
S =hX +hx +hx, =(hy + )% + %) - o +hx - X,
s, =hx +hx, =(h +h)(x +%)- hx - hhx,

— The 3X3 linear convolution can be written as;

és,0 €1 0 0 0 0 Ou

é 0 é i u

25 6 1 -1 0 0 04 |
8s,0=6&1 1 -1 0 1 O0Ux (continued on
a.’q 6 U the next page)
éSB l:l @ O = 1 = 1 0 O 1@

s, €0 0 1 O O Of
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 Example-12 (cont’ d)

gy, 0 0 O 0 0 uél 0 Oy
6 0 é G
0 h 00 0 0 G 105, .
80 0 h, 0 0 0 U 0 1ug°y
Xg u>é l:lxéxll]
50 0 0 hy+h O 0 el 1 o0p &
: 1€ ! Bx, b
€0 0 0 0 h+h, 0 0& o 10
e ue u
§0 0 0 O 0 h+hgg 1 1§

— Conclusion: Thisalgorithm, which can not be obtained by using
the Cook-Toom or the Winograd algorithms, requires 6
multiplications and 10 additions
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