Chapter 9: Algorithmic Strength
Reduction in Filters and
Transforms

Keshab K. Parhi

Outline

e |ntroduction

e Pardle FIR Filters

— Formulation of Parallel FIR Filter Using Polyphase
Decomposition

— Fast FIR Filter Algorithms

* Discrete Cosine Transform and Inverse DCT
— Algorithm-Architecture Transformation
— Decimation-in-Frequency Fast DCT for 2M-point DCT

Chapter 9

| ntroduction

« Strength reduction leads to a reduction in hardware complexity by
exploiting substructure sharing and leads to less silicon area or power
consumption inaVLSl ASIC implementation or |ess iteration period
In a programmable DSP implementation

» Strength reduction enables design of parallel FIR filters with aless
than-linear increase in hardware

 DCT iswiddy used in video compression. Algorithm-architecture
transformations and the decimation-in-frequency approach are used to
design fast DCT architectures with significantly less number of
multiplication operations

Chapter 9

Parallel FIR Filters

Formulation of Parallel FIR FiltersUsing
Polyphase Decomposition

 An N-tap FIR filter can be expressed in time-domain as
N-1
y(n) =h(n)* x(n) = § h@i)x(n- i), n=012x¥
i=0

— where {x(n)} isan infinite length input sequence and the sequence {h(n)}
contains the FIR filter coefficients of length N

— In Z-domain, it can be written as

Y(2) =H(2)%X(2) = % h(n)z " 9% x(n)z" 0
€n=0 g en=0]

Chapter 9

* The Z-transform of the sequence x(n) can be expressed as.
X(2)=x(0)+Xx(D)Z ' +x(DZ*+X(JZ° +»x

=[XO +X@ 7+ X7 * +ei+ 7' [XD + X7 +XGZ * 439
=X, (2°)+Z*X,(Z°)

— where X,(z?) and X ,(Z?), the two polyphase components, are the z-
transforms of the even time series {x(2k)} and the odd time-series

{x(2k+1)}, for {O£k<¥}, respectively
o Smilarly, thelength-N filter coefficients H(z) can be decomposed as.
H(2) =H(2°) + Z'H,(Z")
— whereHy(z?) and H,(z?) are of length N/2 and are referred as even and
odd sub-filters, respectively

* Theeven-numbered output sequence {y(2k)} and the odd-numbered
output sequence {y(2k+1)} for {OEk<¥} can be computed as

(continued on the next page)

Chapter 9

e (cont’'d)
Y(2) =Y,(2°) + 27V, (Z°)

= (Xo(2) + 2 X,(Z)AHo(2) + 2 H,(2)
= Xo(Z2)Ho(22) + 72X (1) Hy(22) + X, (22)H(29)]

+ 7 2[X,(2)H,(2)]

— 18, | Y (22) = X (22)H,(Z) + 22X, (2%)H,(Z%)
Y, (2%) = Xo(Z%)H,(Z%) + X, (Z°)H,(Z%)

— where Y ,(z2) and Y ,(z%) correspond to y(2k) and y(2k+1) in time domain,
respectively. This 2-parallel filter processes 2 inputs x(2k) and x(2k+1)
and generates 2 outputs y(2k) and y(2k+1) every iteration. It can be

written in matrix-form as;

Y=H:X o

Chapter 9

(9.1)

— Thefollowing figure shows the traditional 2-parallel FIR filter structure,
which requires 2N multiplications and 2(N-1) additions

x(2k) [1_HO "D > Y(2K)
> H1
x(2k+1) ["_HO .ég > Y(2k+1)
—» H1 *z°

« For 3-phase poly-phase decomposition, the input sequence X(z) and
the filter coefficients H(z) can be decomposed as follows

X(2) = X,(Z) + 2 X,(Z) +Z2X(7)
H(2) =H,y(2) +2'H,(Z) + 2 *H,(Z)

— where {X(23), X (28), X,(z3)} correspond to x(3k),x(3k+1) and x(3k+2)
in time domain, respectively; and {H,(z3), H,(z%), H,(z%)} arethe three
sub-filters of H(z) with length N/3.

Chapter 9

— The output can be computed as.
Y(2) =Y,(2) + 2 N(2) + 7Y,(2)
= (X, + 2%, + 22X,){H,, + 2 H, + 2 °H,)
= [X Hy + 23X Hy + X H)|+ 22X H, + X Hy + 2 3X,H,
+ Z-Z[Xon + X H, + XzHo]

— Inevery iteration, this 3-parallel FIR filter processes 3 input samples x(3k),
X(3k+1) and x(3k+2), and generates 3 outputs y(3k), y(3k+1) and y(3k+2),
and can be expressed in matrix form as;

AV S Z°H, Z-Bng éx,u
a,U_¢€ 3y Ugy () 9.2
gt Mo Mg -
0 842 H, HoH 20

Chapter 9 8

— Thefollowing figure shows the traditional 3-parallel FIR filter structure,
which requires 3N multiplications and 3(N-1) additions

— HO >@ >@ > Y(3K)

X(3K) &> H1 >@ >@ > Y(3k+1)

| H2 D0y
HO

v

X(3k+1)
—@» H1
—>
—>

H2 D[D|. Z

HO

x(3k+2)
“&» H1 D
—>

H2 D

Chapter 9

e Generalization:

— Theoutputs of an L-Parallel FIR filter can be computed as.
1 .)
Y, =z'L§eLé H X 4G HiX, & OEKEL- 2

e:k+1 ﬂ ei:O ﬂ
1 (9.3
YL—l = a Hi ><L 1-1i

— This can aso be expressed in Matrix form as

Y=H>X

N L T RVER
?Yo y SHO Z H_, » Z nggxog
U EH H, o z'H, €6 U
e u==x e u (9. 4)
0 Exx @k ok oxx Ug]
& U § Uy
a0 gH., Ho, »x H gng-lu

Note: H is a pseudo-circulant matrix

Chapter 9

Two-parallel and Three-parallel Low-Complexity FIR Filters

« Two-paralle Fast FIR Filter
— The 2-parallel FIR filter can be rewritten as

Y,=H X, +Z°H,X, (9.9)
Y1 = (Ho + Hl) >(Xo + Xl)' HoXo - H1X1

— This2-parallel fast FIR filter contains 3 sub-filters. The 2 sub-
filters HyX, and H X, are shared for the computation of Y, and Y,

y(2K)

HO (N >
X(2K) ﬂt\l/
y(2k+1)
g HO+H1 »@_'\IJ >
x(2k+1) L
H1 D

Chapter 9 11

— This 2-paralld filter requires 3 distinct sub-filters of length N/2
and 4 pre/post-processing additions. It requires 3N/2 = 1.5N
multiplications and 3(N/2-1)+4=1.5N+1 additions. [The traditional
2-paralld filter requires 2N multiplications and 2(N-1) additiong]|

— Example-1: when N=8 and H ={h,,h,»xh,,h }, the 3 sub-filters
e Ho ={h:h.hi. b}
H, ={h,h, hy,h}
Ho +H, ={hy +h,h, +hy,h, +h h +h }
— The subfilter H,+H, can be precomputed
— The 2-pardld filter can also be written in matrix form as

Y, =Q, XH, X %X, (9.6)

Q, is a post-processing matrix which determines the manner in which the filter outputs
are combined to correctly produce the parallel outputs and P, is a pre-processing
matrix which determines the manner in which the inputs should be combined

Chapter 9 12

(magli”o(;m) 2 aeHo 0 él Ou .

Z u

=& u>d|ag;H +H_>€a 1“><e H 9.7
e

1 1 -1f
Y8 H ﬂ@ll?l

— where diag(h*) represents an NXN diagonal matrix H, with diagonal
elements h*.

— Note: the application of FFA diagonalizesthe original pseudo-
circulant matrix H. The entries on the diagonal of H, are the sub-
filtersrequired in this parallel FIR filter

— Many different equivalent parallel FIR filter structures can be
obtained. For example, this 2-parallel filter can be implemented
using sub-filters{H,, H,-H,, H,} which may be more attractive in
narrow-band |ow-pass filters since the sub-filter H,-H, requires
fewer non-zero bits than H,+H,. The parallel structure containing
H,+H, ismore attractive for narrow-band high-pass filters.

e

o
| e g ey

CEED>

aly

Chapter 9 13

o 3-Paralld Fast FIR Filter
— A fast 3-parallel FIR agorithm can be derived by recursively
applying a 2-parallel fast FIR algorithm and is given by

Y0 = HOXO B Z-3H2X2 + Z-3[(H1 T HZ)(Xi t XZ)_ Hlxl]

Y1 :[(Ho + Hl)(XO + Xl)' H1X1]) [Hoxo B Z_3H2X2] (9.8)

Y2 = [(HO + Hl T HZ)(XO + Xl T XZ)]
) [(Ho + Hl)(XO + Xl)) H1X1]
) [(Hl + Hz)(x1 + Xz)' H1X1]

— The 3-parallel FIR filter is constructed using 6 sub-filters of length
N/3, including HoXo, H; Xy, HoXo, (Hy +H,) (X, + X,):
(H1 + HZ)(Xl + Xz) and (Ho +H, + Hz)(xo +X1+X2)
— With 3 pre-processing and 7 post-processing additions, thisfilter
requires 2N multiplications and 2N+4 additions which is33% less
than atraditiona 3-paralldl filter

Chapter 9 14

— The 3-paralld filter can be expressed in matrix form as

Y; = Qg xH X, XX,
&v,0) el 0 z° Qg 01
Y:é{l:I :?_1 1 lil i
séYngsgo 101(1)3%'1
er.d - - e
2 e U@ 0
¢ M, U 4o
e u g
& My D 1
y d'agé H, U 5 & 0
s =diagé G RB=e
S Horr § g
€ H,+H, U D 1
é U é
Ho+H +H,g @ 1

Chapter 9

-z% 0 0 Ou
0 10 0
O 0 1 ou
y
0 0 0 1§
ou
oY
u éX, U
e
o T eén
G EX.H
0
1§

15

— Reduced-complexity 3-parallel FIR filter structure

X3 ® > HO
X(3k+1) ®) 1
X(3k+2) y(3K)
®

- A
> H2 » D 4N _ L >
'¥ y(3k+1)
"’@T_' HO+H1 [T " >
‘*@ M H1+H2 @ D
% %) y(3k+2)
HO+H1+H?2 >

Chapter 9 16

Parallel FIR Filters (cont’d)
Parallel Filtersby Transposition

 Any paralel FIR filter structure can be used to derive another parallel
equivalent structure by transpose operation (or transposition).
Generally, the transposed architecture has the same hardware
complexity, but different finite word-length performance

o Consider the L-paralld filter in matrix form Y=HX (9.4), whereH is
an LXL matrix. An equivalent realization of this paralél filter can be
generated by taking the transpose of the H matrix and flipping the
vectors X and Y':

—_ T
Y. =H xX_
—where'}XF :[XL-l X, XX XO]T
tYe = [YL_l Y, ., X YO]T (9.10)

Chapter 9

17

e Examples:
— the 2-paralel FIR filter in (9.1) can be reformulated by using transposition

asfollows: eYu é H, H,u éX.
Sl &, HTE

elol
— Transposition of the 2—para||e| fast filter in (9.6) leads to another

equivalent structure: (Q - >‘P) XX

QMR e)

=K *H, XQ ><><2F

e H, 6él1 -1

Cil=e T Mdiag, +H 080 15€

D 1 7B o1

. 8 H1 ﬂg ']H

— The reduced-complexity 2-parallel FIR filter structure by transposition is
shown on next page

Chapter 9 18

 Signal-flow graph of the 2-parallel FIR filter
e« Transposed signal-flow graph

x0

x1

Chapter 9

Fig. (a)

Fig. (b)

19

(c) Block diagram of the transposed
reduced-complexity 2-parallel FIR filter

X0 ® > > HO > »y0
x1 f- ; » HO+H1
— D) > H1 > » vyl
Fig. (c)

Chapter 9

20

Parallel FIR Filters(cont’d)

Parallel Filter Algorithmsfrom Linear Convolutions

 Any LXL convolution algorithm can be used to derive an L-parallél
fast filter structure

« Example: the transpose of the matrix in a2X2 linear convolution
algorithm (9.12) can be used to obtain the 2-paralé filter (9.13):

u é& Ou €z *X, U
eSZu grhlb ucexu éu éH, H, Oue "0
eS-Lu v hype o > & uU~ey y pUue Xo |

a0 ho, eXU eliu e 1 oU a X U
&6 80 hpf ¢ X, 4
(9. 12) (9.13)

Chapter 9 21

e Example: To generate a2-parallée filter using 2X2 fast convolution, consider
the following optimal 2X2 linear convolution:

S=CxH xAXX
1 0 ou aeh oel Ou :

@oél g0 0 1é| Shoa@la
— Note: Flipping the samplesin the sequences{s}, {h}, and {x} preserves

the convolution formulation (i.e., the same C and A matrices can be used
with the flipped sequences)

— Taking the transpose of this algorithm, we can get the matrix form of the
reduced-complexity 2-parallel filtering structure:

Y =(CoH xA)" %X =QxH P xX

> CE&)CD)@\
C\ C\ -
m> CD) (ON

Chapter 9 22

— The matrix form of the reduced-complexity 2-parallel filtering structure
YL ellO aeH1 0 él 1OueZZXu
e U u
>d|ag;H +HoR 1 dhg X, o 019
ev 14 y

8 I_Io ﬂ@ -1 1H8X1H
— The 2-parallel architecture resulting from the matrix form is shown as
follows

— Conclusion: this method leads to the same architecture that was obtained
using the direct transposition of the 2-parallel FFA

-
K@D > ; ’ y(2k+1)
x(2k) — HO+H1
H1 S ¥(2k)

Chapter 9 23

Parallel FIR Filters (cont’d)

Fast Parallel FIR Algorithmsfor Large Block Sizes

o Pardld FIR filters with long block sizes can be designed by cascading
smaller length fast parald filters

« Example: an m-parallel FFA can be cascaded with an n-parallel FFA
to produce an (m’ n)—parallel filtering structure. The set of FIR filters
resulting from the application of the m-parallel FFA can be further
decomposed, one a atime, by the application of the n-parallel FFA.
The resulting set of filterswill be of length N/(m” n).

* When cascading the FFAS, it isimportant to keep track of both the
number of multiplications and the number of additions required for the
filtering structure

Chapter 9 24

— The number of required multiplications for an L-parallel filter with
| = |_1|_2><><><1_r iIsgiven by:l\I N
M=+~—0OM (9.16)
O —1Li 1=1
 wherer isthe number of levelsof FFAsused, L . isthe block size of

the FFA at level-i, M. Is the number of filters that result from the
applications of thei-th FFA and N is the length of the filter

— The number of required additions can be calculated as follows:

A:Aé L +é ga}éqll- é% Mk%

+§”_(3 M

(9.17)

Chapter 9 25

« where A, isthenumber of pre/post-processing adders required by
thei-th FFA
— For example: consider the case of cascading two 2-parallel reduce-
complexity FFAS, the resulting 4-parall€ filtering structure would
require atotal of 9N/4 multiplications and 20+9(N/4-1) additions.
Compared with the traditional 4-parallel filter which requires 4N
multiplications. This results in a 44% hardware (area) savings

o Example: (Example9.2.1, p.268) Calculating the hardware complexity

— Calculate the number of multiplications and additions required to
Implement a 24-tap filter with block size of L=6 for both the cases

{L,=2,L,=3} and{L, =3,L, = 2}:
. Forthecase{Ll =2,L, :3}:
M,=3 A=4 M,=6 A =10,

24 € 24 U
M=—-="136)=72 A=(4" 3)+(10" 3)+(3" 6)a—— - 1,=96
5y €0 [+ 3+(03+(3 Blgry 514

Chapter 9 26

« For thecase {L1:3, L, :2}:
24M1:6, A:lo, M2:3) AZ:41 , 24 N
(s , , , 2\ u
M=-—<"1(6"3)=72, A=({10" 2)+(4" 6)+(6" 3)a—— - 1;,=98
5 69 10" 2)+(a” 6)+ (6" g 4
e How arethe FFASs cascaded?

e
— Consider the design of aparald FIR filter with ablock size of 4,
using (9.3), we have

Y=Y, +ZY,+ 27, + 2%,
=(X, + 72X, + 22X, + 23X,)x (9.18)
(Hy +2'H, +Z22H, + 2 °H,)
— The reduced-complexity 4-paralle filtering structure is obtained by
first applying the 2-parallel FFA to (9.18), then applying the FFA a

second time to each of the filtering operations that result from the
first application of the FFA

— From (9.18), we have (see the next page):

Chapter 9 27

— (cont'd) Y= (X'O +Z 1X'1)>(H'O +7Z 1H'l)
* Where X=X, +Z2X, X=X +Z2°X, {
I' ,
fH,=H,+z°H, H'= H1+z'2H3i§
— Application-1 | | | o o o
Y = XoHy +Z|(X; + X)XHy +H;)- XoHo - XH,|+22XH, (9.19)
» The 2-pardle FFA isthen applied a second time to each of the
filtering operations {X‘o Hy, X' H} ,(X'0+X'1) >(H'O+H'1)} of
(9.19)
— Application-2
« Filtering Operation {X'O H'O}
XoHo =(X, +2°%,[Hy +2°H,)
=XoHo+Z 2[(Xo + Xz)’(Ho + Hz)' XoH, - X2H2] +Z'XH,

Chapter 9 28

 Filtering Operation {X'1 H']}
X.H, =(X, +22X,H, +Z22H)
— XiHl + Z_ 2[(Xl + X3) >(Hl + HS) - XlHl B X3H3] + Z- 4X3H3
« Filtering Operation {(X'O+X'1)(H'O+H'l)}
(XX HigHH) =[(% + %)+ 2 2%, + X) Ho +H) +22(H, +H;)
=[(%o+ X (Ho +Hy)|+ [, + XG)(H, +H)
XX XX Hy +H +H, +Hy) 0

+Z
g’ (Xo + Xi)(HO + Hl)) (Xz + Xs)(Hz + Hs)H
— The second application of the 2-parallel FFA leadsto the 4-parallel
filtering structure (shown on the next page), which requires 9
filtering operations with length N/4

Chapter 9 29

Reduced-complexity 4-parallel FIR filter (cascaded 2 by 2)

poe TEEOR
PN] 'Iri p— i ! BT o -—{j‘—P LAk
i : _fl-\ T
1 1
| HO+H1 7 —+ {3 QE“; Ak 2
; z
T N e R " _:J| H1
ol B bt Bt A2 -+ =} P E 1 R B
F s
- "
/‘_]_)__.._.: _||_:‘} R e A
Bkt 2 ikt 3
A [Irg
al <l Fx

Chapter 9 30

Discrete Cosine Transform and
Inverse DCT

e Thediscrete cosinetransform (DCT) isafrequency transform used in
still or moving video compression. We discuss the fast
Implementations of DCT based on algorithm-architecture
transformations and the decimation-in-frequency approach

* Denotethe DCT of the data sequence x(n), n=0, 1,..., N-1, by X(k),

k=0, 1, ..., N-1. The DCT and inverse DCT (IDCT) are described by
the following equations:

— DCT:

X (K) = (k)& x(n) C°S§(Z”+1)kp‘3’ K=0lwxN-1 (9.20)
n=0
— IDCT: 4 s \
x()=23 e(k)X(k)cosSZ” +1K i n=0LuN-1 (921
NS

Chapter 9 31

° Where e(k)_i]/ﬁ, k:O
%l otherwise

 Note: DCT isan orthogonal transform, i.e., the transformation matrix
for IDCT isascaled version of the transpose of that for the DCT and
vice versa. Therefore, the DCT architecture can be obtained by
“trangposing” the IDCT, i.e.,, reversing the direction of the arrowsin
the flow graph of IDCT, and the IDCT can be obtained by
“trangposing” the DCT

e Direct implementation of DCT or IDCT requires N(N-1) multiplication
operations, i.e., O(N?), which is hardware expensive.

« Strength reduction can reduce the multiplication complexity of a 8-
point DCT from 56 to 13.

Chapter 9 32

o Example (Example9.3.1, p.277) Consider the 8-point DCT

J 42n+1)k 0
X (k) = e(k X(N) COSZ - k=017
(9 =)@ x(mcosg™— ==p ¢

11/J2, k=0

where e(k) =
) } 1, otherwise

— It can be written in matrix form as follows: (where ¢ = cosip /16)

éX (O)U @4 s ¢4 ¢ ¢ ¢ ¢ G U ?X(O)U
e u e ue u
@X 1) u §C1 G, & G G C; Gy Gy (@X(l) (
exX(2u e, ¢ Cy C, Cg Cyp Cyx CyuUex(2u
e u e ue u
aX @)y _&s G G G G G G Gy)Qéx(?’) U
éx (4 & C,, C. C c. c.Uéxa4)
a ()l] & C, Cp Cpy C G, Cy 28l:|é()l]
@X (5) l;l G:.C5 Cs Cx C C3 Cp G Gy u §X(5) u
gx (6)3 gce Cg Cpy Gy Cp G Cp Cx 3 gX(G)H
eX(Ng &, ¢y C C; Cy C3 Cy CogexdNg

Chapter 9

— The agorithm-architecture mapping for the 8-point DCT can be

X (O)0

2X (D)

eX ()0
e u
@X (3)g _
eX(4u
e u
eX()a
e u
@X (6)(]
exX (7§

Chapter 9

u
u

carried out in three steps

» First Step: Using trigonometric properties, the 8-point DCT can be

rewritten as in next page

s

D>(D
oS iy

ol

(o))

(D>(_§D> (‘P; (D;cq» (%(D> 8> >

?};

C4

G
CB
C
C4
C,
C2
C

w

(9.22)

— (continued)
XD =ML +MC +M,C+ MG, X(2) =M€, + MG

X() =M, - Mg +M.c+MC;, X(6) =My, - My,C,

0.23
X =MG- MG - MC, - MG, X(4) =My, €, (5.23)
X(®) =M G+ M,C;- M +MyC;, X(0) = Ry, C,
— where
Mo =%- %, M =%-X, M,=%-X%, M;=X-X,
R=%*X, R=X%*+X, EB=X+X, RB=X*X, (9.24)

Me=R-R My=E-kK, HK,=R+R, B =kR+h,
Mloo:F:)Lo'Hl’ PlOO:PlO-l_Pll

— Thefollowing figure (on the next page) showsthe DCT
architecture according to (9.23) and (9.24) with 22 multiplications.

Chapter 9 35

Figure: The implementation of 8-point DCT structure
In the first step (also see Fig. 9.10, p.279)

~Lon -.v...-ﬁ = T * =
En] - [
s 5 i
P] —= irmean = =
Eln =
MR, CES
L -I =
A1 ,_.:, g ey =
Bl - Ll pormy = P
~r = . BE
T T
. .‘n..,_-:, GRS
T e s S == e =+ =
mr 2 ey '\-. = N =L
- = S e
D R O
S ,=1_., = s kY -
Ela Lo 5 tTen T]
. R i =
™ i = = —-—= it
. Y]
'

Chapter 9

36

Chapter 9

» Second step, the DCT structure (see Fig. 9.10, p.279) is grouped into

different functional units represented by blocks and then the whole

DCT structure is transformed into a block diagram
— Two major blocks are defined as shown in the following figure

x(0)
x(1)

x(0)
X(1)

—>
—>

—>
—

>><z:—> x(0)+x(1) -
> - — X(0)-x(1) —{ X2
a b
>§<z:-> ax(0)+bx(1) e
|:> __ I XC%
a -

— bx(0)-ax(1)

— Thetransformed block diagram for an 8-point DCT is shownin

the next page (also see Fig. 9.12 in p.280 of text book)

37

Figure: The implementation of 8-point DCT structure
In the second step (also see Fig. 9.12, p.280)

* Third step: Reduced-complexity implementations of various blocks

are exploited (see Fig. 9.13, p.281)

— Theblock | XC% | can berealized using 3 multiplications and 3
additions instead of using 4 multiplications and 2 additions, as

shown in follows

4 . X > & ; —» ax+by
+
X »%—»ax y
y —»— —» bx-ay y > bx-ay
at+ -
b
_ Definethe block | XC= | with{a=sinq, b=cosq} and
reversed outputs as arotator block [rot g | that performsthe

following computation:

u_gom - singy &0
&'t &ing cosy { &yl

Chapter 9

39

¢><

bx-ay

XC+ | A
4 ax+by

X—P
y—b

rotq

ja=dnq

%b:cosq

— Note: The angles of cascaded rotators can be ssmply added, as
shown in the transformation block as follows:

vy

—>

rotq,|_jrotq,[

—»

—

—>

2lrot(, +a,)1

— Note: Based on the fact that arotator with {q =p/4} isjust like
X+ |, wemodify it asthe following structure:

the block

“rot(p/4)

—» X’

—»y’

Chapter 9

X,

Y,

c4
X c4 =cos(p/4)
c4

— From the three steps, we obtain the final structure where only 13
multiplications are required (also see Fig. 9.14, p.282)

rot 883p O_‘ X+ /V ’ XD
Irgpea
X(0)—» » X(5
X+ -
X(7)—> b \f
S e
X(3)—-> rot &p_g X+ \\ c4
x(4)» X% 16 50— " — > X(7)
X(1)—» =3p 6 X(6)
X+ 3p 9
X(6)~> X &8 5 x
X(2)—> cd
ORcka X+ X+ " XO)
4 X

Chapter 9

Discrete Cosine Transform and Inverse DCT

Decimation-in-Frequency Fast DCT for 2™Point DCT

e Thefast 2 ™point DCT/IDCT structures can be derived by the
decimation-in-frequency approach, which is commonly used to derive
the FFT structure to compute the discrete-Fourier transform (DFT). By
power-of-2 decomposition, this algorithm reduces the number of
multiplications to about

{(N/2)log , N}

 Weonly derivethefast IDCT computation (The fast DCT structure can
be obtained from IDCT by “transposition” according to their
computation symmetry). For ssmplicity, the 2/N scaling factor in (9.21)
Isignored in the derivation.

Chapter 9 42

— Define X (k)= e(k)xX (k) and decompose x(n) into even and
odd indexes of k asfollows

%L &2n+1k 1
x(n) =3 X (k)cos ;
(n) 2.0 (k) & N IOH
N/2-1 (

= X (2k)cos

é

g 2N d
o 1 .
2N H 2cod(2n+1)p /2N]
(2n+1p(2k +1)u__é(2n+1)p o
H0058 ON H

g+ a X(2k +1)cos (2n-+1p (2k +1)u
v

A 2X(2k + 1)cos§

— Notice

(2n+1)p (2k +1) oS (2n+1)p o (2n+1)p (k +1)

(2n+1)pk

2C0S

+ COS

Chapter 9 43

— Therefore, (sincecod(2n+1)p (N/2- 1+1)/N|=0)
N/2-1

&7 % (2k +1) cosS2N I (2k + 1) 2n +1p ¢

4 § 2N "8 2N
Nt s(2n+1)p(k+2)0 &ty é(2n+1)pk
= X2k +1 cos? -+ X2k +1)cosz 2
A X(2ke+Boosg === gr @ X(2krt)eosg T F Y
N/2-2 £ <~ N/2-1 . N
= a X(2k+1)cos§(2n+1)|l\lO (k+1)§+ a X(zx +1)cos§(2n+N1)pk§
k=0 k=0
— Substitute k' =k+1 into the first term, we obtain
"8 X (2k + 1) cosS2n +p (k + 1o
k=0 8 N H
N/2-1 4 v~ N/2-1
_ ké.1 X(Zk 1) S§(2n +1)3k az é X(Zk 1) E(Zn +1)3k E
= k=0
« where X(-1)=0
Chapter 9

— Then, the IDCT can be rewritten as

N/21 (2n+1)3ku 1
X =@ X(2KJeosg o ot S o ip an]

N/2-1

&) a2+ X ox- oo

— Define 3 gy 0 x(2k),
TH(K)© X(2k+1)+ X (2K- 1),

— and
I NG - é(2n+1)pkU
|g(n)° a X(2k)c ose(?s/g ¢ N=01xxN/2-1

| k=0
I N/2-1

th(n° & [X (2K +1) + X (2 - 1)]coss 2?*/1)2‘3)"”
| k=0

— Clearly, G(k) & H(k) arethe DCTsof g(n) & h(n), respectively.

k=01%xN/2-1 (9.25)

(9.26)

Chapter 9

— Since yfcos(z(N . 1I-\| n)+1pk _ COS(2n+1)pk
|
%COS(Z(N -1-n)+1p _ _(2n+1p
— Finaly, we can get
i 1
- X(n)=g(n) +
i (m=g(n) 2cos|(2n+1)p /(2N)]
|
y 1
V X(N - 1- n) =g(n)-

1 Zcos[(Zn +1)p /(2N)] (9.27)
— Therefore, the N-point IDCT in (9.21) has been expressed in terms
of two N/2-point IDCTsin (9.26). By repeating this process, the

IDCT can be decomposed further until it can be expressed in terms

of 2-point IDCTs. (The DCT agorithm can aso be decomposed

similarly. Alternatively, it can be obtained by transposing the
IDCT)

h(n),
n=01%%N/2- 1

h(n),

Chapter 9 46

o Example (see Example 9.3.2, p.284) Construct the 2-point IDCT butterfly
architecture.

— The 2-point IDCT can be computed as

1 x(0) = X (0) + X (1) cos (p /4),
P x(1) = X (0)- X (1) cos (p /4)

— The 2-point IDCT can be computed using the following butterfly
architecture

X (0) > x(0)

X (1) —=25 > x(1)

Chapter 9 47

o Example (Example 9.3.3, p.284) Construct the 8-point fast DCT
architecture using 2-point IDCT butterfly architecture.

— With N=8, the 8-point fast DCT algorithm can be rewritten as.

— and

Chapter 9

1 G(K)° X(2K),

| - R k=0123
fH(k)° X(2k+1)+ X (2k- D),

{o(n) = aG(k) dan+ “Okg

:
e(2n +1)pkg
& 8

=0,1%N/2- 1

—\—

;h(n) a H (k) cos

1
2cos|(2n +1)p /16]

|
|

! ~ 1

'IfX(N “-m=oen):- 2cos{(2n +1)p /16

h(n),

x(n) =g(n)+

]h(n),

— The 8-point fast IDCT is shown below (also see Fig.9.16, p.285), where
only 13 multiplications are needed. This structure can be transposed to get

the fast 8-point DCT architecture as shown on the next page (also see Fig.
9.17, p.286) (Note: for N=8,C4 =1/[2cos(4p /16)| = cos[p /4) in both

Chapter 9

figures)

X (0) —>—W > X (0)

) X (0) G(2)

X(4) > > X (1)
X (4)

X(2) —* —Gﬂ* > - > X (3)
X (2) G@ ><;

X (6) > - > X (2)
X(6)

>Z(1) —’\ X’ v Cc1 K> X(7)

X (5) S > —> X (6)

N \

X(3) M TN o X4
C6> -1> C5> >

X (7) > > —» >

X (3)
>
)2 (7) H (3) C4 -1 -1 X (5)

49

Fast 8-point DCT Architecture

