
Gate Size Optimization for Row-based Layouts

Naresh Maheshwari Sachin S. Sapatnekar

Department of Electrical and Computer Engineering

201 Coover Hall, Iowa State University, Ames, IA 50011, USA.

fnaresh,saching@iastate.edu

Abstract

A transistor sizing algorithm for row-based layouts

is presented under a improved area model. This al-

gorithm uses convex programming to �nd a minimal

area circuit for a given delay speci�cation. The new

area model uses a concept of row heights as opposed to

the conventional metric of sum of gate sizes. Results

over a number of circuit indicate a signi�cant reduc-

tion both in the minimum delay achievable and area

as compared to TILOS-like optimizer.

1 Introduction

One of the primary design objectives while synthe-
sizing CMOS circuits is to reduce both the area and
the delay. These two requirements directly contradict
each other, and the tradeo� involved in developing
an acceptable compromise constitutes the sizing prob-
lem. Most CMOS circuits are sequential circuits that
consist of combinational subcircuits between clocked
registers. Since the clock period is determined by the
maximum delay over all such combinational subcir-
cuits, a popular formulation of the optimization prob-
lem is to minimize the area of each combinational sub-
circuit subject to delay constraints.

xx x x x x x x x x x x x x

x x x x x x x x x x x x x

Channel

Vdd

Gnd

Vdd

Gnd

G

Figure 1: Macrocell Layout using a Row-based Style

Previous methods have estimated the area of a lay-
out as the sum of all transistor sizes. In many layouts,
however, including macromodule based layouts [1] and
many custom layout styles, transistors are organized
in rows with channels left between rows for routing.
In such ordered layouts, the height of a row is gov-
erned by the maximumheight of a cell within the row,

which may be variable if the cells in a row are sized
di�erently. This is illustrated in the layout shown in
Figure 1, taken from the layout design system in [1].
The height of each rectangular row is given by the
maximum of the cell heights. Under a structured lay-
out style such as that in [1], the height of each cell is
proportional to the gate size, and the maximum gate
size in each row determines the contribution of that
row to the area of the layout. This is because most
of the CAD tools for channel routing in industry work
with rectangular shapes, and even in the presence of
over-the-cell routing, the space corresponding to the
shaded region in Figure 1 is largely wasted, and can
be used for sizing without any detriment to the total
area of the layout. In the �gure, an increase in the
size of the gate G incurs no additional area penalty,
and may serve to reduce the circuit delay.

The motivation for this work is provided by the im-
provements in accuracy that are provided by a more
accurate area measure, and the exploitation of this
measure to produce more compact layouts. It is shown
that the problem of sizing row-based layouts is equiv-
alent to a convex programming problem, and an exact
algorithm for convex programming [2] is used to �nd
a solution.

2 Area and Delay Modeling

Area Modeling: For the purposes of this work, we
consider gates to be laid out using the style in [1],
where variable-height cells have been used in a row-
based layout scheme.1 Under this layout style, the
height hi of a gate Gi is given by hi = wn;i+wp;i+K

where wn;i is the width of its n transistors, wp;i the
width of the p transistors, and K is a constant that
accounts for the space needed to connect p-di�usion
and n-di�usion, etc. The length of the gate depends
on the number of inputs and is independent of the
transistor sizes.

The height of the ith row, Ti, is determined by
the height of the tallest gate in the row, Ti =
maxj2rowi

(hj): The total area of the chip with n rows

1It is possible to adapt the algorithm to other layout styles
too.



is then given by

A =

�
max
8j

Lj

�
�

nX
j=1

Tj (1)

where Lj is the length of row j. Under the design
style used, the length of a row will not change since
changing gate sizes will only result in a change in the
cell height. Therefore, the objective of minimizing the
total area is the same as minimizing the sum of the
Ti's. It is assumed here that the transistor sizing tool
will not be allowed to change the placement of gates
in rows. An iterative design procedure would go back
and forth between placement and sizing until an opti-
mal result is obtained.
Delay Modeling: We �rst show how an n transis-
tor is modeled by a set of capacitances and resis-
tors. A p transistor of width wp;i is similarly modeled.
Since all the transistors are set to minimum length,
the capacitances can be modeled in terms of only
the transistor widths. For an n transistor of width
wn;i [2], we can write the source/drain capacitance
Csdni = Cd;n1 �wn;i+Cd;n2 , and the gate capacitance
Cgni = Cg;n1 � wn;i + Cg;n2 where Cd;n1; Cd;n2; Cg;n1

and Cg;n2 are constants. The on-resistance, Ri;n, of
an n transistor is given by Rin = Rn

wn;i
.

At the gate level, each gate is modeled by an equiv-
alent inverter, parameterized with all n (p) transistor
sizes set to wn;i (wp;i). In this implementation, only
static CMOS gates are considered. All transistors of
the same type in a gate are assumed to have a uniform
size. The pull-up (pull-down) structure is represented
by an equivalent inverter with p transistor (n transis-
tor) size of Sp;i (Sn;i); this number is referred to as the
gate size. The relation between the gate sizes in the
equivalent inverter and transistor widths in the gate
can easily be computed for various type of gates.2 The
capacitance loading, CLi

, of a gate Gi can be calcu-
lated from the transistor sizes of its fanouts as follows:

CLi
=
P

j2fanouti
(Cgnj + Cgpj ) +Cintrinsic (2)

where Cintrinsic corresponds to the source and drain
capacitance connected to the output node of Gi.

The Elmore fall delay, (tfi ), of gate Gi can then

be obtained from CLi
and Sn;i as tfi =

Rn�CLi

Sn;i
. The

rise delay is similarly obtained as tri =
Rp�CLi

Sp;i
. The

PERT procedure [3] is used to �nd the critical path in
the circuit. The implementation of this procedure is
as in [2].

2For example, for a k-input NAND gate, Sn;i = wn;i=k,
Sp;i = wp;i). Notice that Sp;i is wp;i (and not k �wp;i) since in
the worst case, only one of the k transistors in parallel will be
on.

3 Optimization Problem Formulation

For a combinational circuit, the transistor sizing
problem is formulated as the problem of minimizing
the circuit area subject to delay constraints as follows
[4, 2]:

minimize Area (3)

subject to Delay � Tspec

and Each transistor size � Minsize

Previous approaches have modeled the area as the
sum of the transistor sizes, and it is shown that the
problem is equivalent to a convex programming prob-
lem. In row-based layouts, however, a more appro-
priate area model is the one described in Section 2.1.
We proceed to show now that the convexity properties
continue to hold under this area model.

The delay model here models the circuit delay using
posynomial functions [5] of the gate sizes, as has been
done before. If each gate size xi is made to undergo
the transformation xi = ezi , then the feasible set is
de�ned by a convex region in the space of zi's [4, 2]. As
shown in Section 2.1, minimizing the area of a layout
with n rows involves the minimization of

nX
i=1

max
j2rowi

(wn;j + wp;j) (4)

The objective is a sum of the maximum of posynomial
functions in the gate sizes, and is transformed using
the mapping above to the maximum of convex func-
tions of the gate sizes. Since the sum and the maxi-
mum of a �nite number of convex functions is convex,
the objective is a convex function, to be minimized un-
der constraints speci�ed by a convex set. Therefore,
the problem has been shown to be a convex program-
ming problem. As a consequence, any local minimum
is a necessarily a global minimum.

The optimization algorithm used here is an e�cient
convex programming algorithm. Details about the op-
timizer are provided in [2], and not described here due
to space limitations. The complexity of the algorithm
is O(n2:5), where n is the number of variables. The al-
gorithm requires the computation of the area gradient
and the delay gradient of all the pull-up and pull-down
structures. E�cient algorithms for the computation
of these gradients have been embedded into the im-
plementation.

4 Experimental Results

The algorithm is implemented in C as a program,
Rowsize, that constitutes about 1200 lines of code.
Although most ISCAS89 benchmark circuits were



tested, due to limited space only a few are presented
here. The circuit delays are in nanoseconds while the
execution times on a DEC ALPHA 3000/600 work-
station are in seconds. As mentioned earlier the area
is measured as the sum of row heights. Since the IS-
CAS89 benchmarks did not contain any information
about the layout, the gates were assigned arbitrarily
to rows. The unsized area and delay correspond to cir-
cuits with all there transistors set to minimum width
of one. Note that since height of each row in a unsized
circuit is 2 units (height = Wn +Wp = 1 + 1 = 2),
the unsized area is twice the number of rows.

The obtained results were compared with our im-
plementation of the TILOS algorithm from [4], where
the objective function is to minimize the sum of all
transistor sizes (note that this is dissimilar from the
objective function for Rowsize).3 After performing
this optimization, the area of the resulting row-based
layout is measured under our more accurate area
model. The comparison is shown in Table 1 and Fig-
ures 2-7. In Table 1, Du and Au refer to the delay
and area, respectively, of the minimum-sized circuit.
The number of gates, G, in each circuit are also shown.
For several values of the delay speci�cation, the area of
the optimum circuit as calculated by Rowsize and the
TILOS-like optimizer are shown. The execution time,
Tex, for each algorithm is also shown. A \-" in Table 1
implies that our implementation of TILOS could not
achieve the delay speci�cation. Although it is seen
that the CPU times required by Rowsize are typically
much larger than those for the TILOS-like optimizer,
it can be seen that Rowsize gives far superior results
for this area model.

It is observed from the results that for loose de-
lay constraints there is not much of a di�erence be-
tween TILOS and the convex optimizer. As the delay
constraint get tighter, the convex optimizer performs
much better than the TILOS-like optimizer in terms
of area of the circuit for similar delays. In all cases
the convex optimizer is able to achieve much smaller
delays than the TILOS-like optimizer.

In a small number of cases, for loose constraints
Rowsize takes slightly more area than TILOS-like op-
timizer. This can be attributed to the use of loose
convergence parameters.

5 Conclusion

In this paper, we have presented a convex program-
ming approach with a new area model that is par-

3We tried to adapt the TILOS-like optimizer to minimize the
objective function for the row-based layout problem directly.
However, the heuristic does not work well for this objective
function.

ticularly suitable for row-based layouts, e.g. macro-
based or channel routing based layouts. We have
also demonstrated that considerable reduction can be
obtained both in the area and the minimum delay
achievable in comparison with the TILOS algorithm.
From our results, we conclude that the TILOS algo-
rithm provides good results for loose constraints, and
has a low run-time. For tighter constraints, however,
the convex programming algorithm provides signi�-
cant improvements although it is computationally ex-
pensive. Therefore, it is a good idea to use TILOS
under very loose constraints, and the convex program-
ming method for critical subcircuits.

References

[1] J. Kim, S. M. Kang, and S. S. Sapatnekar, \High
performance CMOS macromodule layout synthe-
sis," in Proceedings of the IEEE International

Symposium on Circuits and Systems, pp. 4.179{
4.182, 1994.

[2] S. S. Sapatnekar, V. B. Rao, P. M. Vaidya, and
S. M. Kang, \An exact solution to the transis-
tor sizing problem for CMOS circuits using convex
optimization," IEEE Transactions on Computer-

Aided Design, vol. 12, pp. 1621{1634, Nov. 1993.

[3] T. Kirkpatrick and N. Clark, \PERT as an aid to
logic design," IBM Journal of Research and Devel-

opment, vol. 10, pp. 135{141, Mar. 1966.

[4] J. Fishburn and A. Dunlop, \TILOS: A posyno-
mial programming approach to transistor sizing,"
in Proceedings of the IEEE International Con-

ference on Computer-Aided Design, pp. 326{328,
1985.

[5] J. Ecker, \Geometric programming: methods,
computations and applications," SIAM Review,
vol. 22, pp. 338{362, July 1980.



Table 1: Comparison of Rowsize vs TILOS
Circuit Delay Rowsize Tilos Circuit Delay Rowsize Tilos

Spec Area Tex Area Tex Spec Area Tex Area Tex
Du in ns ns sec sec Du ns ns sec sec

i135 33.6 4.22 6871 5.79 1.2 frg1 20.8 4.2 256 7.4 0.8
G = 269 29.9 4.47 3163 214.7 36 G = 109 19.8 4.41 144 103 69
Du = 39:4 27.9 4.70 2489 - - Du = 21:8 14.6 6.6 71 - -
Au = 4 10.7 73.3 287 - - Au = 4 11.5 55.0 230 - -
f51m 20 8.3 616 9.1 0.5 cm150a 18.9 4.5 66 8.4 0.8
G = 136 17.2 8.7 430 53 99 G = 72 18.3 4.7 69 53.9 35.7
Du =22.4 13.8 10.6 238 - - Du = 21:5 15.5 7.2 33 - -
Au = 8 10.2 84.9 1213 - - Au = 4 12.9 69.7 18.8 - -
count 33.1 26.0 250 24.8 0.2 cm151a 32 4.06 14 7.3 0.2
G = 144 30.5 26.8 133 769.0 24 G = 34 30.6 4.13 8.5 103 44
Du = 35:5 19.4 42.7 44 - - Du = 32:7 16.7 5.99 3.2 - -
Au = 24 12.5 284 13.2 - - Au = 4 9.8 55.7 1 - -

0

50

100

150

200

250

10 15 20 25 30 35 40

A
r
e
a

Delay in ns

Rowsize
TILOS

Figure 2: Area-delay Curve for i135

0

10

20

30

40

50

60

70

80

90

10 12 14 16 18 20 22 24

A
r
e
a

Delay in ns

Rowsize
TILOS

Figure 3: Area-delay Curve for f51m

0

100

200

300

400

500

600

700

800

10 15 20 25 30 35 40

A
r
e
a

Delay in ns

Rowsize
TILOS

Figure 4: Area-delay Curve for count

0

10

20

30

40

50

60

70

80

90

100

110

10 12 14 16 18 20 22

A
r
e
a

Delay in ns

Rowsize
TILOS

Figure 5: Area-delay Curve for frg1

0

10

20

30

40

50

60

70

12 13 14 15 16 17 18 19 20 21 22

A
r
e
a

Delay in ns

Rowsize
TILOS

Figure 6: Area-delay Curve for cm150a

0

10

20

30

40

50

60

70

80

90

100

110

5 10 15 20 25 30 35

A
r
e
a

Delay in ns

Rowsize
TILOS

Figure 7: Area-delay Curve for cm151a


