
Proc. IEEE 1993 Custom Integrated Circuits Conf.

DELAY AND AREA OPTIMIZATION FOR DISCRETE GATE SIZES

UNDER DOUBLE-SIDED TIMING CONSTRAINTS
�

Weitong Chuangy Sachin S: Sapatnekarz Ibrahim N: Hajjy

yCoordinated Science Laboratory and zDepartment of Electrical Engineering

Dept. of Electrical & Computer Engineering and Computer Engineering

University of Illinois at Urbana-Champaign Iowa State University

ABSTRACT

A three-step algorithm is presented for discrete
gate sizing problem of delay/area optimization un-
der double-sided timing constraints. The problem is
�rst formulated as a linear program. The solution to
the linear program is then mapped onto a permissi-
ble set. Using this permissible set, the gate sizes are
adjusted to satisfy the delay lower and upper bounds
simultaneously.

1. INTRODUCTION

Discrete gate sizing is the problem of selecting a
proper size from a standard-cell library for each gate
in a circuit design, without changing the logic func-
tion of the gate, with the aim of minimizing a certain
cost function such as total area or power consump-
tion, and at the same time, meeting the timing con-
straints imposed on the propagation delay along each
path from the primary input (PI) to the primary out-
put (PO). The two-sided timing constraints problem
further requires that propagation delay is bounded
from below by Tinf and bounded from above by Tsup .
This problem has been shown to be NP-complete [1].

For a combinational circuit, the gate sizing prob-
lem is formulated as

minimize Area

subject to Tinf � Delay � Tsup : (1)

Chan [1] proposed an algorithm to obtain a min-
imum area realization of gates interconnected as a
tree structure under double-sided timing constraints.
He extended the method for general directed acyclic
graphs (DAGs). However, the procedure does not
necessarily obtain the optimal solution for a general
DAG, and the algorithm is of exponential complexity.
Lin et al.[2] and Li et al.[3] both proposed heuristic
algorithms for single-sided timing constraint. The al-
gorithm proposed by Lin et al. is based on the TILOS
algorithm [4] for continuous transistor sizing, with

�This research was supported by Joint Services Electronics
Program under contract N00014-90-J-1270 and by the Semi-
conductor Research Corp. under contract 92-DP-109.

further generalization. The algorithm is essentially
an iterative procedure consisting of two phases: in
the �rst phase, cell sizes are increased from the mini-
mum size until the delay constraint is satis�ed; while
in the second, the sizes of certain cells are decreased to
minimize the total area, while ensuring that the tim-
ing speci�cation is not violated. The algorithm pro-
posed by Li et al. is exact for serial-parallel graphs.
The work is extended to non-serial-parallel circuits by
the use of several heuristics. Both of Lin's and Li's
approaches are heuristic; hence no conclusive state-
ments can be made on how close their solutions are to
the optimal solution. Moreover, neither work shows
comparisons with a technique such as simulated an-
nealing that is well-known to give optimal or near-
optimal solutions. Although both approaches may be
exible enough to be extended to handle double-sided
timing constraints sizing problem, no substantial ex-
periments were conducted to show such exibility.

In this work, we tackle the discrete gate sizing
problem for CMOS standard cells and present an al-
gorithm that works in three phases to �nd its solution.
In the �rst stage, the gate sizing problem is formu-
lated as a linear program. The solution of this linear
program provides us with a set of gate sizes that does
not necessarily belong to the set of allowable sizes.
Hence, in the second phase, we move from the lin-
ear program solution to a set of allowable gate sizes,
using heuristic techniques. At the conclusion of the
second phase, the set of allowable sizes obtained may
not satisfy the delay lower and upper bound simul-
taneously. Hence in the third stage, we use another
set of heuristics to adjust the gate sizes to meet the
double-sided delay constraints. Finally, to illustrate
the e�cacy of our algorithm, we present a compari-
son of the results of this technique with corresponding
solutions obtained by simulated annealing.

2. PHASE I : THE LINEAR
PROGRAMMING APPROACH

2.1 Delay Modeling

We assume each gate in a standard cell library can
be represented by an equivalent inverter such that the
ratio of the p-transistor size to the n-transistor size

1



of that inverter is a constant. Hence, the size of each
gate can be parameterized by a single number, which
we refer to as the gate size. As in [4], the equivalent
inverter is replaced by an RC circuit; the delay of this
circuit is taken to be the delay of the inverter. In this
case, under the assumption that the capacitance at
the output of a gate is constant, the delay of a gate
of size x is given by

D(x) =
Ru

x
� Cout; (2)

Here Ru represents the on-resistance of a unit tran-
sistor. It can easily be veri�ed that D(x) is a convex
function over the range of positive x.

Under this model, we can compute a set of values
(xj; dj), corresponding to the delay dj associated with
gate size xj.

It can be shown that the function D(x) above can
be approximated by a convex function, PWL(x) of
the form

PWL(x) =

8>><
>>:

a1 � x+ b1 x1 � x � x2
a2 � x+ b2 x2 � x � x3
...
ak�1 � x+ bk�1 xk�1 � x � xk

(3)
Since PWL(x) is convex, it can also be written as

PWL(x) = max
1�j<p

(aj � x+ bj) 8 x 2 [x1; xk]: (4)

2.2 Formulation of the Linear Program

The formal de�nition of the gate sizing problem is
as given in Equation (1). Since the area of the circuit
is di�cult to estimate accurately, we approximate it
as the sum of the gate sizes, as has been done in
almost all work on sizing [4, 5, 6, 7].

The delay speci�cation, which states that the cir-
cuit delay should be bounded above by Tsup , is equiv-
alent to stating that all path delays must be bounded
by Tsup . Since the number of PI-PO (primary input
and primary output) paths could be exponential, the
set of constraining delay equations could potentially
be exponential in number. Hence we introduce ad-
ditional variables, mi, i = 1 � � � n (where n is the
number of gates), correspond to the worst-case delay
from the primary inputs up to each gate. Using these
variables, for each gate i, we have

mj + di � mi; 8 j 2 Fanin(i): (5)

This reduces the number of constraining equations toPn

i=1 Fanin(i), which is bounded above by n2, but
is typically O(n) for practical circuits.

Similarly, for the shortest delay, we introduce new
variables, pi, i = 1 � � � n, correspond to the shortest
delay from PI's up to the output of Gi.

pj + di � pi; 8 j 2 Fanin(i): (6)

We now formulate the linear program as

minimize

nX
i=1

xi

subject to

For all gates i = 1 � � �n
mj + di �mi; pj + di � pi 8 j 2 Fanin(i)
mi � Tsup ; pi � Tinf 8 gates i at PO0s

di � ai;j � xi + bi;j for 1 � j < ki

Minsizei � xi � Maxsizei
(7)

3. PHASE II : THE MAPPING
ALGORITHM

3.1 Introduction

The set of permissible sizes for gate i is Si =
fxi;1 � � �xi;kig. The solution of the linear program
would, in general, provide a gate size, xi, that does
not belong to Si. In this case, we consider the two
permissible gate sizes that are closest to xi; we de-
note the nearest larger (smaller) size by xi+ (xi�).
Therefore, we formulate the following problem:

For all i = 1 � � �n : Select xi = xi+ or xi�
such that Tinf � Delay � Tsup .

Although the solution to this problem is not neces-
sarily the optimal solution, it is very likely that the
objective function value at this point is close to op-
timal. This supposition is borne out by the results
presented in Section 4.

In this section, we propose a sensitivity-based
heuristic which maps the linear program solution to
a permissible set. The complexity of the heuristic is
O(n2) in the most pathological case, and is much less
for the average case.

3.2 Generalized Sensitivity Analysis

3.2.1 Path Slack and Path Tension

For every path P in the circuit, we de�ne two quan-
tities known as path slack, PS, and path tension, PT.
The two quantities are de�ned as follows:

PS(P) =

8><
>:

minj2FO(i) fmj � (mi + dj)g
if gate i is not at a PO:

min (minj2FO(i) fmj�(mi + dj)g ; Tsup �mi)
if gate i is at a PO:

(8)

PT(P) =

8><
>:

minj2FO(i) f(pi + dj)� pjg
if gate i is not at a PO:

min (minj2FO(i) f(pi + dj)� pjg ; pi � Tinf )
if gate i is at a PO:

(9)

where gate i is the gate that lies at the end of path
P, and FO(i) denotes fanout set of gate i. Although
the number of paths in a circuit could be exponential,
our algorithm needs to compute the path slack for at
most n paths in the circuit.

2



3.2.2 Incremental and Decremental Sensitivity

For each gate i, we de�ne the incremental sensi-
tivity, s+, and the decremental sensitivity, s�, as :

s+ = d(xi�) � d(xi): (10)

s� = d(xi)� d(xi+): (11)

Our heuristic rank-orders the gates on a path in in-
creasing order of their incremental (decremental) sen-
sitivities, and places them in this order on an incre-
mental (decremental) sensitivity list or ISL (DSL).
This list is then used to decide the sequence in which
gate sizes are to be changed, as is explained in Sec-
tion 3.3.

3.2.3 The Cone Criterion

In additional to s+ and s�, another factor that is
taken into consideration while deciding the order in
which gates are to be processed is what we call the
cone criterion. It is based on the fact that since the
objective is to minimize the sum of the gate sizes,
we would like to reduce the sizes of as many gates as
possible, and increase the sizes of as few gates as we
can.
Cone criterion : If two gates have the same value
of s+, then the gate which is farthest from a primary
input is given precedence in the ISL. Likewise, if two
gates have the same value of s�, then the one which
is farthest from a primary output is given precedence
in the DSL.

It can be observed that gates towards the PO's
have fewer gates within their fanout cones than gates
towards the PI's. In particular, when we consider
gates that lie on a common path, the fanout cone of a
gate towards the output is a subset of that of a gate
that is closer to the input.

Hence, if the delay along some path is to be in-
creased, it would be more advantageous to decrease
the size of a gate closer to PO, since decreasing the
size of a gate near to PI could possibly have nega-
tive e�ects on the delays of other PI-PO paths. On
the other hand, if the delay along some path is to be
decreased, it would be more advantageous to increase
the size of a gate closer to PI, since this increase would
decrease the delays of a larger number of paths. As a
result, it is likely that a larger number of gates could
change their sizes from xi to xi�, which is in line with
the task of minimizing the objective function.

In practice, we exercise the cone criterion to de-
termine the order of the ISL (DSL) when the values
of s+ (s�) for two gates are within a constant factor
(such as 5%) of each other.

3.3 The Heuristic Algorithm

The algorithm�rst places all gates in a queue in de-
creasing order of their worst case signal arrival time,
mi. The longest path Pl to the gate on the head of
the queue is detected. Unprocessed gates along Pl

are placed on the ISL and DSL, using the procedure
described in Section 3.2. The philosophy behind the
algorithm is to �ll up the path slack of Pl by decreas-
ing the sizes of gates at the head of the ISL. When
the path slack can no longer accommodate any more
decrements in the size of a gate, we take the gate at
the head of the DSL and increase its size; this re-
duces the delay and generates some additional slack
for path Pl.

The idea behind processing a gate with a small
incremental sensitivity earlier is that it would be ex-
pected that such a gate would have a large decremen-
tal sensitivity and would be near the tail of the DSL.
After we set the size of this gate to the next allowable
higher size, its decremental sensitivity is withdrawn
from the DSL since the gate has been processed. As a
result, processing the ISL from the top also achieves
the e�ect of pruning the DSL from below. Hence, it
is expected that only small perturbations about the
LP solution are required.

After each size change, the arrival times of the af-
fected gates are updated; it is adequate to use incre-
mental techniques, since only one gate size is changed.

After the longest path to the gate on the head of
the queue is processed, the shortest path Ps is de-
tected. Similarly, unprocessed gates along Ps are
placed on the ISL and DSL. The path tension of Ps is
consumed by increasing the sizes of gates at the head
of the DSL. When the path tension can no longer af-
ford any more increments in the gate size, we take
the gate at the head of the ISL and decrease its size;
this increases the delay and produces some additional
tension for path Ps.

The procedure continues until each gate has been
processed.

4. PHASE III : THE ADJUSTING
ALGORITHM

At the conclusion of the second phase, the set of al-
lowable sizes obtained may not satisfy the delay lower
and upper bounds simultaneously. Hence we have to
adjust the sizes of some gates to meet the double-
sided delay constraints.

For every gate i in the circuit, we de�ne two quan-
tities known as gate slack, gs, and gate tension, gt.
The two quantities are de�ned as follows:

gsi=

8<
:
minj2FO(i)f(mj + gsj)� (dj +mi)g

if gate i is not at a PO:

minfminj2FO(i)((mj + gsj)� (dj +mi)); Tsup�mig
if gate i is at a PO:

(12)

gti =

8<
:
minj2FO(i)f(pi + dj + gtj)� pjg

if gate i is not at a PO:

minfminj2FO(i)((pi + dj + gtj)� pj); pi � Tinf g

if gate i is at a PO:

(13)

3



Table 1 Performance comparison of our algorithm with simulated annealing.

Circuit Tspec Our Algorithm Simulated Annealing AHS
ASA

[Tinf ; Tsup] Tmin Tmax Runtime Area (AHS ) Runtime Area (ASA)
c17 [1.0, 2.0] 1.03 1.71 0.09s 312 1m 53s 312 1.000
c432 [2.0, 15.0] 2.00 14.93 8.21s 6766 32m 9s 5986 1.130
c499 [1.0, 5.0] 1.19 4.96 20.55s 15756 1h 4m 15132 1.041
c880 [1.2, 10.0] 1.22 9.99 1m 1s 15034 1h 50m 14293 1.052
c1355 [2.0, 16.0] 2.15 15.94 2m 13s 24206 5h 14m 23036 1.051
c1908 [1.8, 35.0] 1.88 34.96 3m 48s 22964 6h 33m 20780 1.105
c3540 [1.4, 25.0] 1.46 24.99 31m 44s 50511 10h 11m 48795 1.035
c6288 [1.1, 135.0] 1.19 134.38 33m 21s 66748 17h 21m 65325 1.022

Starting from PO's, we back-propagate gate slack
and gate tension. For each PO which violates timing
constraints, we �nd the longest path and/or shortest
path to that PO. For example, if gate i at the PO
violates Tsup , we �rst �nd the longest path to i. For
each gate along that longest path, we check if it is
possible to further increase its size. If so, we calcu-
late the reduction of delay due to the increase of the
gate size. We ignore the gates for which the reduction
in the gate delay is greater than the gate tension, to
ensure that the delay lower bound would not be vio-
lated. The cone criterion and generalized sensitivity
can be applied to determine which gate size is to be
bumped up �rst. A similar procedure is applied for
all PO's violating delay lower bound. The procedure
continues until the delay constraints are satis�ed at
all PO's.

5. EXPERIMENTAL RESULTS AND
CONCLUSIONS

The algorithm above was implemented in C on a
Sun Sparc 10 station. To prove the e�cacy of the
approach, a simulated annealing algorithm was im-
plemented for the purpose. The cell library contains
�ve di�erent sizes for each of the logic gates.

The results, in comparison with simulated anneal-
ing, are shown in Table 1. The test circuits include
most of the ISCAS85 benchmarks. Tinf and Tsup in
the second column indicate the delay lower bound and
delay upper bound, respectively. The third and the
fourth columns of the table are the minimumand the
maximum delays in the optimized circuit. The run-
times are moderate even for large circuits, and are
considerably smaller than those for simulated anneal-
ing. We also would like to point out that the chief
component (over 95%) of the runtime was solving the
linear program; the heuristic was extremely fast in
comparison. AHS is the total area of the circuit us-
ing our algorithm, while ASA is the total area using
simulated annealing. The total area is measured as
the sum of the gate sizes. It can be seen that the accu-
racy of the results of our approach ranges from being

as good as simulated annealing for c17 to an discrep-
ancy of 13.0% for c432 in comparison with simulated
annealing. The average discrepancy is 4.5%.

In conclusion, in this paper, a three-step algorithm
is presented for discrete gate sizing problem under
double-sided timing constraints. The results show
that the algorithm is able to �nd a near optimal so-
lution in a reasonable amount of time. Although the
algorithm is for delay/area optimization problem, it
can be extended to handle delay/power optimization
problem.

REFERENCES
[1] P. K. Chan,

\Algorithms for library-speci�c sizing of com-
binational logic," in Proc. ACM/IEEE Design
Automation Conf., pp. 353{356, 1990.

[2] S. Lin, M. Marek-Sadowska, and E. S. Kuh,
\Delay and area optimization in standard-cell
design," in Proc. ACM/IEEE Design Automa-
tion Conf., pp. 349{352, 1990.

[3] W. Li, A. Lim, P. Agrawal, and S. Sahni,
\On the circuit implementation problem," in
Proc. ACM/IEEE Design Automation Conf.,
pp. 478{483, 1992.

[4] J. Fishburn and A. Dunlop, \TILOS: A posyn-
omial programming approach to transistor siz-
ing," inProc. IEEE Int. Conf. Computer-Aided
Design, pp. 326{328, 1985.

[5] J.-M. Shyu, A. Sangiovanni-Vincentelli,
J. Fishburn, and A. Dunlop, \Optimization-
based transistor sizing," IEEE J. Solid-State
Circuits, vol. 23, pp. 400{409, Apr. 1988.

[6] S. S. Sapatnekar, V. B. Rao, and P. M. Vaidya,
\A convex optimization approach to transis-
tor sizing for CMOS circuits," in Proc. IEEE
Int. Conf. Computer-Aided Design, pp. 482{
485, 1991.

[7] M. R. Berkelaar and J. A. Jess, \Gate sizing
in MOS digital circuits with linear program-
ming," in Proc. European Design Automation
Conf., pp. 217{221, 1990.

4


