Convex Delay Models for Transistor Sizing*

Mahesh Ketkar Kishore Kasamsetty Sachin Sapatnekar
Department of ECE, Department of ECE, Department of ECE,
University of Minnesota University of Minnesota University of Minnesota
Minneapolis, MN 55455, USA Minneapolis, MN 55455, USA Minneapolis, MN 55455, USA
ketkar@ece.umn.edu kishore@mail.ece.umn.edu sachin@ece.umn.edu
Abstract in the development of closed form models for inverters and then

This paper derives a methodology for developing accurate Con_mapping other gates to an equivalent inverter [5, 6]. An alternative

vex delay models to be used for transistor sizing. A new rich clas&PProach uses, a look-up table constructed using experimentally de-
of convex functions to model gate delay is presented and the C"r_lved delay data for various configurations, with intermediate data

cuit delay under such a model is shown to be equivalent to a conveRQINts being derived by interpolation methods, as in the delay model
function. The richness of these functions is exploited to accurately [71. H0\_Never, this approach requires storage .Of large ”“mb'?r
model gate delay for modern designs. The delay model is incorpd?| data points to guarantee accuracy and hence is very expensive
rated into a transistor sizing algorithm based on TILOS. The modeld! terms of memory requirements. Neither the closed-form model-

were characterized by using a set of grid points and then validated"d @Pproach nor the table-look-up modeling method is particularly

using a disjoint data set. The models were found to be within abou‘f"eII suited for optimization since the modeling functions typically

10% of SPICE for nearly all of the gate types considered. Also pre-d0 MOt possess any convexity properties and cannot be used in the

sented are the experimental results of sizing various test circuits. context of a f_o_rmal optimization algori_thm that is guar_anteed to find
the global minimum in a reasonable time. Moreover, it is not neces-

1 Introduction sarily true that these models will have continuous derivatives, or, in
) o . ) o . the case of look-up tables, any derivative at all. Therefore, there is a
Transistor sizing, an important problem in designing high per-need for new models that permit accurate delay computations, while
formance circuits, has traditionally been formally defined as [1]:  maintaining convexity properties suited for optimization. This work
. derives a methodology for developing such models.
minimize  Areaor Power The theoretical underpinning of this approach is a result that de-
subjectto  Delay < Tspec 1) fines a new class of functions that are shown to work well for mod-
eling circuit delays. These functions are provably convex under a
There have been many significant attempts to solve this problem, forariable transformation that is explained in next section. The set
example, [1,2]. Most published approaches use the Elmore delagf functions from which these functions are chosen includes the set
model [3] for timing calculations, and a breakthrough observationof posynomials as a proper subset, and therefore, we refer to these
in [1] was that the circuit delay under this model is a posynomialfunctions ageneralized posynomial$his work uses a curve-fitting
function (to be defined later) of the transistor sizes. The advantagapproach to find a least-squares fit from the delay function, com-
of this functional form is that under a simple variable transforma-puted by SPICE over a grid, to a generalized posynomial in order to
tion, the problem can be transformed into a convex optimizationprovide guarantees on accuracy of the delay model.
problem for which it is guaranteed that any local minimum is also a
global minimum. 2 Background
It is generally accepted that the use of the Elmore delay modgé T
at the transistor level is very inaccurate for modern designs. Thi€-1 ~Convex optimization
inaccuracy can be attributed to its failure to accurately consider im- A convex programming problem, also referred to as a convex
portant factors such as input transition times, position of the switchoptimization problem, involves the minimization of a convex func-
ing transistor, sizes of fighting complementary transistors, tempordion over a convex set. A problem of the type
relation between inputs and transistor nonlinearities. As a result,

exact optimization under this model may lead to a wrong solution minimize f(x) (2
to the sizing problem since the timing model has a bad correlation suchthat gj(x) <0,1<i<m
with reality. More precisely, the solution may be suboptimal in that x € RN

it meets the timing specification without minimizing the cost func-

tion, or entirely inaccurate, in the sense that it may not meet theg 5 convex programming problem fx) andg;(x),1 <i < m, are
timing constraints at all. o ) convex functions. In the context of transistor sizing, this requires
Several approaches for accurate timing modeling have been prepe derivation of convex closed-form expressions for the path delay;
posed in the past. For example, one could model gate delays bys 5 result, this will satisfy the requirement of relation (2) that each
developing closed form expressions [4]. Much work has been donﬁming constraint is of the forngj(x) < 0. All of these statements

“This work is supported in part by a gift from Intel Corporation, by the NSF under CONStitute well-known facts [1, 2].
contract CCR-9800992 and the SRC under contract 99-TJ-692. We would like to thanl2 2 posynomia| de|ay modeling
Dr. Priyadarsan Patra from Intel. '

The delay characteristics of the output waveform at a gate may
be represented by two numbers:
(1) thedelay, i.e., the difference in the time when the output wave-
form crosses 50% of its final value, and the corresponding time for
the input waveform.
(2) theoutput transition timei.e., the time required for the wave-
form to go from 10% to 90% of its final value.



In much of the previous work on transistor sizing, the circuit Theorem 1 If the range of interest of is restricted to the positive
delay has been expressed in the form of a class of functions knowarthant where eaclk > 0, then under the variable transformation
as posynomials. A posynomial is a functiprof a positive variable  from the spacex € R" to the space € R" given byx = €4, the

x € R that has the form generalized posynomial functioh of equation (6) is mapped to a
N convex function in the domain.
p(x) = Zy, Xl_ai,- ®) Proof: It is well known that a generalized posynomial of order
] ‘ill 0, Go(x), is transformed to a convex functioy(z) in the z do-

main [8]. Since the functional form of the functio@(x),k > 0,
where the exponents;j € R and the coefficienty; € R*. In the is different from that ofGp(x) due to the additional nonnegativity
positive orthant in the space, posynomial functions have the useful COnstraint on thesj; variables, they are treated separately.
property that they can be mapped onto a convex function through an  1he proof of Theorem 1 proceeds by consider@gz) for k >

elementary variable transformaticx;) = (€#). 1; to prove its convexity, it is enough to prove the convexity of
The Elmore delay model used, for example, in TILOS [1] and m
ICONTRAST [2], used the following form of expressions for the L=P (Gk—li)Bi7Bi >0, (8)
path delay. il:l ' N
n X| n bi
DO = > aj —+3 ~+K (4)  since a sum of convex functions is convex. The gradient and Hessian

i,j=1 =X of this function are, respectively, given by
wherea;j, b, K € RT are constants ansd= [x;,- -, Xn] is the vector m m
of transistor sizes. Notice that the Elmore delay expressions are a_,| _ p G+ B B(G. 1) 1loa, -
subset of the set of posynomials; specifically they are posynomials(’,j‘v i; jzll_llﬂ( k1) | BiGe 1)V Gy
whose exponents belong to the §et,0,1}. m '

_ L Bi V Gk—1, )

3 Modeling using generalized posynomials i; Gk-1,i

3.1 Generalized posynomials 2 . M B v Gk 1, m BV Gy q;
Posynomials and convex functions are a rich class of functions” | G 1 | Gr_1j
and the basic motivation for this work is that better delay estimates ’ /

can be obtained by fully exploiting this richness. mooB 2 T
A generalized posynomial functidBy(x),x € R", wherek > 0 Z\ G2 . (Gk—lyi V* Bk-1i = VCk-1; VGk—l,i)
is called the order of the function, is defined recursively as follows: =1 k-1

) + (10)

We will prove thatL is a convex function by showing that the ma-
trix 2L is positive semidefinite. Since the first term is easily seen
to be positive semidefinite, the functianis convex if (Gy_y; V2

Gr-1,— VGk-1i V Gf_1;) is positive semidefinite. We will now

1. A generalized posynomial of order Gy, is the posynomial
form defined earlier:

n
_ ) Qi
Go(x) = ;y, il:lx' ’ ) show this by proving the following result, by induction and the proof
of Thezorem 1 folIowsTas_ an ir_n_mediate_ consequence. The matrix
where the exponents;j € R and the coefficientg; € R™. (Gk v* Gk — VGV Gy ) is positive semidefinite for ak > 0.

Basis case&Consider a zeroth order generalized posynomial given by

Go= S @[] =S
PN IR

2. A generalized posynomial of ordiee> 1 is defined as

n
G =3 vi[] [G2i(0]™, (6)
T = )
whereh; = w |‘|']-‘:1ea*'izi. It is easy to see that the value of edgh
where the exponents;; € R* and the coefficienty; € RT, is positive for allz; this observation is used later in the proof.
andGy_1(x) is a generalized posynomial of order 1. Now consider the matrixi = (Go V2Gg— Gy Gg). The

th ; i A
Specifically, the generalized posynomial of first order, is given(q’l) term of this matrix is given by

by ) Hy (éhi> <i§hia,-qa“> - <i§hiaiq> (éhian>
f(X):IZv.ﬁ <%mm |£|><§“"'s> (7) s

where eaclfjj € RT, eachg;jis € R, eachy; € RT, and eachyj € _
R*. Stripping Equation (7) of its complicated notation, one may =Y
observe that the term in the innermost bracket represents a posyn-

omial function. Therefore, a generalized posynomial of first orderTherefore, we can write

is similar to a posynomial, except that the place of theariables

in Equation (3) is taken by a posynomial. Similarly, a generalized H — hihy (& — ) - (& _a_)T
posynomial of ordek uses a generalized posynomial of order 1 - Zi Z 1l ) !

! ) h . . i=1j=i+1

in place of thex variables in Equation (3).

The following theorem parallels the relationship between posyn- T - - L
omials and convex functions. whered; = [gj1, &2, - --ain] . Therefore, H is positive definite since

eachh; > 0.

kel

> > [hhj(ag—aje) -a]
=1j=1#i
p

|
Ms |

> [hihj (aiq —ajq) - (a1 —ay)]



Induction hypothesis For a generalized posynomiél_,(z) of

Vad
orderk— 1, wherek > 1,
Gk-1(2) V? G_1(2) = VGk-1(2) v Gk-1(2) A ‘ we
is positive semidefinite. a
For the inductive step, we write Wn I
Figure 1: Invert;er circuit

r k m -
Gy = ZLk,i = ZH [ (G2 )P, (11)
= S =1
) _ ] _ Here, thex;'s are characterization variables, and thes, Bjj’s, C,
so that eachy is of the form of the functiorl. defined in Equa- andP;’s are real constants, referred to collectivelychsracteriza-
tion (8). We may use the expressions for the gradient and Hessiafibn constants The parametef is set to either -1 or 1, depending

of L in Equations (9) and (10) to write on the variable, as will soon be explained. The problem of charac-
5 T terization is that of determining appropriate values for the charac-
Gk v* Gk — VG v Gy terization constants. We will show in Section 4 that the use of this
; ; ; ; T form of function implies that the circuit delay can be expressed as a

_ L 2L _ L L generalized posynomial function of the transistor widths.
<|Zl k") <|Zlv k") <|Zlv k") <|Zlv k") Due to the curve-fitting nature of the characterization procedure

itis not possible to ascribe direct physical meanings to each of these
(Lkl VZ Lkg— Vi v LT ) terms. However, it can be seen that the fall delay increas€} ,as
) Y| 8 k,q . . . -
W, andt are increased, and decreasesvass increased, implying
that an appropriate choice for the paramétéor the first three vari-
ables is 1, and that faw, is -1. Note that this is not as restrictive as
m B Gy the Elmore fqrm since, among other things, fgs andci_j 'S pro-
U= Z 2V S (12)  vide an additional degree of freedom that was not available for the
= Gk-1,i,] Elmore delay form. A similar argument may be made for the rise
delay case.

r
&

>

If we set

this may be rewritten as
3.2.2  Circuit simulations and curve-fitting

rr nooB A two-step methodology is adopted to complete the characteriza-
Lict (L q{ Oty + Y =5~ (Gk_1.6i V> Gk_1q, — - : Uit i :
z Z kI\=kattaty Zi G2 .\ k-lai V" Bk-1,4; tion. In the first step, a number of circuit simulations are performed
I=1g=1 =1 k-1 to generate points on a grid. In the second, a least-squares procedure
VGk-1,4i V Gl—l,q,i)}) — Ly Ly gl ag is used to fit the data to a function of the type in Equation (13).

A series of simulations is performed to collect the experimental
data using the HSPICE circuit simulator. The total number of data

r r m "
= z Z Lii Lk q Z ZB' (Gk-14qi VZ Gy-1,qi — points, N, increases exponentially with the number of characteri-
I=1g=1 S kalyq_’i o v zation variables. For the inverter circuit with four characterization
roor m variables andl data points for each variable to cover the range of

VCk-14,i VGqu_i) + Z Z Ly, Lk g Z(Uq —0)(g—-a)", interest, the total number of data poiriswould bed®. Therefore,
/ T SgSTH = it is important to choose the data points carefully; in particular, it is
not necessary to choose an even grid for the transistor widths and a
which is positive semidefinite by the induction hypotheQ&D. smaller granularity of points can be chosen for langgs in case of
3.2 Delay estimation the f?]" t(rja“Si“O”- - .
. . The determination of the characterization constants was perform
321 Outline of the delay modeling approach ed by solving the following nonlinear program that minimizes the

Our characterization approach uses sizes of transistors belonging §m of the squares of the percentage errors over all data points.
the gate along with the traditional cell characterization parameters,

namely input transition time and load capacitance. We refer to these N I'Destini) — Dactual(i) >
input parameters as characterization variables. minimize Z) D )
We begin with an explanation of the timing model for an in- i= actual

verter, such as the one shown in Figure 1; this model is generalize\glh - . o -
. X . ereN is the number of data point8estin{i) andDacrual(i), re-
to qomplex gates in subsequent sections. The aim is to be able gbectively, represent the values given by Equation (13), and the cor-
estimate delay as a function of the pmos and nmos transistor W'dth?esponding measured value at t}gedata point. This nonlinear pro-
Wp andwp, the input transition time, and the output load capac- gramming problem is solved using the MINOS optimization pack-

itance,C,. Therefore, for an invertewp, Wn, T, andC form the age [9] to determine the values of characterization constants.
set of characterization variables. These variables reflect the set

variables that are generally considered to be important in definin(g;"’-3 Characterization of a set of primitives
the delay of a gate in most models. For a library-based design, a full characterization of all cells is a
We attempted the use of several types of functions to achieve thé@able alternative and its complexity is comparable to characterizing
desired levels of accuracy. The general form of expression that prdhe library using any other means. For general full custom designs,
vided consistently good results for different gate types is as followshe number of SPICE data points to be generated for the curve fit in-
creases exponentially with the number of characterization variables.
m It is computationally expensive to perform such a large number of
Delay= Z P I_!O%A +Gij )B” +C (13) simulations and hence an alternative strategy is suggested.
;=1 i= An alternative strategy is to precharacterize a set of logic struc-
tures such that any gate can be mapped to one of the elements of

(14)

n



this set with some acceptable loss of accuracy. It is important to ved PrimFallA PrimFallE

note that even under this procedure, the transistor sizing approach
will size each transistor individually, and this method is only used f
for delay estimation. 0 out
out -
I CL
—CT

One straightforward technique that may be used is to map all
of the gates to an “equivalent inverter” [5, 6], and use the inverter
characterization to estimate delays; the sizes of the pull-down nmos
transistor and the pull-up pmos transistor of this inverter reflect the
real pull-down or pull-up path in the gate. The widths of these
new transistors are referred to as the equivalent widths. The equiv- @ (b) ©
alent width calculation is based on modeling the “on” transistors as
conductances, and the equivalent width corresponds to the effective Figure 3: 2-input primitives for fall transition
conductance of the original structure. Accordingly, if two transis- . . . _
tors of widthsw; andw; are connected in parallel, the equivalent B Of Figure 3(a), the gate is mapped to Figure 3(c). A similar proce-

width is defined asv; +w» and if the transistors are connected in 9Ure is applied for rise delays, i.e., the pull-up partis retained while
the pull-down part is replaced by an equivalent nmos transistor. If

. . . . . 1 111
series, the equivalent W'dth. IS deflned[wg W, ] Co r1\%e assume single input transitions, only one of the pmos transistors

H_owe_ver, such a reduction _has shprtcomlngs. ansnd_er t_he_ nangiil be on during the rise output transition. The pmos transistor that
gate in Figure 2(a), whose equivalent inverter approximation s illussg of contributes only as a loading capacitance, and hence for rise
trated in Figure 2(b). The node capacitances at nodes other than thg,ay calculation, the nand gate is mapped to an inverter. Similarly,
output are not accounted for in this approximation. Also, the same_inn ¢ primitives, containing two pmos transistors in series with an
mapping will be used irrespective of whether input A or B is SWitch- o5 ransistor, namely PrimRiseA and PrimRiseB, are developed
ing, whereas in reality, these two cases correspond to different delay ot can accurately model NOR gates and NOR gate-like structures.

o lo &>

values. This issue is addressed in the section 3.3.1. For simple gates with more than two inputs and complex gates,
vdd an expanded set of primitives is necessary. The set of primitives used
vad to approximate such gates is shown in Figure 4. It should be noted
A that these are not the only primitives on which gates with more than
ﬂ w2 WIAW2 three inputs will be mapped. For example, consider a three input
NAND gate and the case where the latest arriving input is the one
A :> connected to the topmost transistor in the nmos chain. In this case,
% w3 I cL Weq T~ CL the NAND gate will be mapped to the two input primitive PrimFallA
1 I shown in Figure 3(a); the two nmos transistors at the bottom are
34{ waLl - collapsed into one transistor of equivalent width.
Weq=W3* W4/(W3+W4)
. PrimCoRise PrimCoFall
Figure 2: Mapping of a nand gate
vdd vdd

We attempt to reduce the errors caused because of these ap-
proximations in our mapping procedure by defining a set of basic o
primitives and mapping arbitrary complex gates to these primitives. ﬂi
We have developed primitives for three distinct types of logic struc- )
tures namelysimple gates, complex gatasdsequential elements fn Q q T
for both fall and rise transition. -

0
—

H
‘5

3.3.1 Simple gates

For simple gates, we have developed one input, two input and three
input primitives. Single input primitive is basically an inverter. We H
refer to an inverter as a primitive because of the fact that mapping
procedure along with inverters also maps NOR gates for fall transi- = =
tion and NAND gates for rise transition on an inverter. Since this @ (b
ﬁg?&}g’:ufsgjfgﬂ;%ﬁht:f inverter described in Section 3.2.1, itis Figure 4: Primitives for mapping of simple and complex gates
Here we emphasize that arinput primitive does not mean that
it is a primitive only for then-input gates. Any gate having equal 3.3.2  Complex gates
to or more tham inputs would be mapped to aminput primitive In case of simple gates with only one transistor chain, the internal
depending upon the position of the switching transistor. node capacitances are inherently taken into account during the mod-
The set of two input primitives for fall transition at the output is eling phase. For example, in the case of AOI gates there is more than
shown in Figure 3 (the presence of a load capacitance at the outpone parallel chains of transistors. Hence if AOI gates are mapped
is implicit and is not shown). Timing analysis procedure in our tool (except when all the transistors connected to the output and belong-
assumes only single input transitions, and hence there can only beg to the nonconducting chains are off) on to the primitives devel-
one pair of pmos and nmos transistors switching at a time. oped for simple gates, then the internal node capacitances would not
Consider the two-input nand gate shown in Figure 3(a). For thébe correctly accounted for, resulting in inaccurate delay values. We
fall delay, if the input transition occurs at input A, then the gate issolve this problem by developing another set of primitives. For AOI
mapped to Figure 3(b). Note that since the output is being pulledyates we make use of the observation that the worst case delay cor-
down in the case of a fall delay calculation, the pull-down is re-responds to one conducting chain of transistors between the output
tained while the pull-up is replaced by a single transistor, and thend supply, while all other chains are nonconducting. This shows
characterization equations of Figure 3(b) are used to estimate thiat primitives for AOI gate can be developed by addition of a non-
delay. In a similar fashion, when the input transition occurs at inputconducting transistor chain in parallel to the transistor chain in the

H



simple gate primitive. A few example primitives for AOI gates are whereR, > 0, Q > 0, Cyj,Cpi,Kni.Kpi,Bni.Bpi: Yni,Ypi vi,kcJ g, Y ke,Cr,
shown in the Figure 5. Similarly, a limited set of primitives can be B yc ,B:,y: are real constants. Thg,; andwy, values, as usual, re-
developed for general complex gates. fer to the nmos and pmos transistor sizegefers to the transition
time, and theC;’s correspond to the capacitances at the gate output
and at internal nodes. We will show that the delay and transition

Vdd . . . .
time functions have the form of generalized posynomials.
The capacitance at each internal or gate output nd@gjés mod-
f eled by
f C= ZKJJ-WJ'-H(” (15)
] H '
where thek'j andk” values are real constants, amgs represent the
0| T 1 o] L equivalent transistor widths in the circuit.
= d 1 From the Equation (15) we can see that output transition time is
Figure 5:Examples of AOI Primitives represented by a generalized posynomial. Additionally, the loading

3.3.3  Sequential elements capacitance given by equation (15) has the form of a generalized
ﬁosynomial. Using Theorem 1, it can be seen that when the in-

AOI12FALL AOI22FALL

A static sequential element normally consists of a set of pass transi

" dafewi " A I tial el tis oh ut transition time and loading capacitance expressions are substi-
Ors and atew inverters. An example sequential element IS SNOWN 1 e jn Equation (15), the resulting expression is also a generalized

F_|gu|re ﬁ S'nlce an |n\;e:jter that d”"?s a trﬁnsml_ssg)_n gatesformsd osynomial. The objective function is chosen as a weighted sum of
singlé channel connecteéd component, as Shown In FIgUre ©, We Ogse transistor sizes, which is clearly a generalized posynomial form.

velop a separate model for this component, and in conjunction with g jgentical arguments to [1, 2], since the maximum of convex
the inverter model explained earlier, we are now able to model every

S : unctions is convex, the problem of area minimization under delay
channel connected component in this sequential element. An.adva%nstraints for “template” gates can be shown to be a convex pro-

. AR . N egramming problem. For gates that do not adhere to the template, the
ments is the simplicity in constraint formulation in the across-Iatchrmpping techniques described in Section 3.3 may be used to model
optimization. the delay function. We will now show that in such a case, the delay
function continues to remain in the generalized posynomial form.

= Letw,,-- -, Wy, represent transistor widths in the primitives the gates
n are mapped to. In the process of mapping the gates, the transis-
tor widths in the primitives can be expressed in terms of the actual
2 transistor widths in the circuit. Lets,---,wy represent the actual
T transistor widths in the circuit. Them’s can be expressed as
-1
7 R

wzh1<i<m (16)
qe{]_...n}
Sequential Element Primitive
Figure 6:Sequential Element and Primitive All occurrences of vall_Je ofvi"l, which is a basic variable _in the
4 Proof of convexity of the delay model characterization equation (see the last paragraph of Section 3.2.1),

) ) : - can be substituted as above in Equation (15), maintaining the gener-
The ensuing discussion shows that the delays of individual pathgjized posynomial property of the delay equation.

satisfy the property of convexity, and uses this fact to prove the con-

vexity of the optimization problem. It is to be emphasized that this5 Experimental Results

discussion is purely for expository purposes; the optimizer used in I . .

this work for sizingdoes notrequire the enumeration of all paths, ___1aPle 1 shows the validation results of different primitives, pro-

and performs the optimization efficiently by checking, through aP@S€d in Section 3.3, with respect to SPICE. The purpose of listing

timing analysis, whether the constraints are satisfied or not. For ddhese validation results on the primitives is to emphasize that tran-

tails, the reader is referred to [1]. sistor nonlinearities can be effectively modeled by convex functions
Let the critical path of the circuit be represented by a set of2"d to test the validity of our basic idea of modeling delay as convex

stages, where each stage represents a gate. Let us first considé‘ru%‘:t.'ons' R%ferrlngdtothuhatlon (13})}]‘?‘ \r/]aluejclmf: 1.‘?:;3 chos?n,

scenario with fully characterized gates where no primitives are usediNd It was observed that the use of higher valuesj faid not of-

but the delay is characterized in terms of the size of each transid®" Significant improvements in accuracy. The characterization was

tor. Then, substituting the characterization variables explicitly intoP€rformed in ? 025%“ technology 1b);/vary|n%/tran5|stor widths to

Equation (13), we see that the fall delay of the gate corresponding_lO to 8Qum, T from 20 to 300 ps (10% to 90%) ar@ up to 800

to stage has the following form: . We emphasize that accurate fits are required only in the region
' where sizing constraints are satisfied. For example, if output tran-
Delay = z P - (W;ll + Cnl)Bnl . (Wﬁr%h + Cnn,h)Bn"h sition time violates the specification then the optimizer will ensure
I

that its value is reduced to a point in the feasible region, and the
convexity of the functions will force the optimization to move to

Bpt ... B ) B (C. Bc
(W1 + Cp1) -+ (Wpm, + Cprmy, )™ (Tii-1 4 Co) ™1 (Cj + cc )™ this region after some iterations.

and the output fall transition time of the gate in stabes the forrh Table 2 shows the validation results of various gates with respect
P 9 9e: to SPICE. We stress here that all the possible mappings for a gate
71 =0- (W;ll—i-knl)y"l---(wgnlh + Knmy ) Y™ (W1 + Kpa ) VP2 -+ are considered and the worst case results are shown in the table.

. For example, the fall transition on gate Nand3 can map on to either
Y, . Vi1 (C: Ye L ! . .
(Wpm, +Kpm, )™ (Ti—1 + ko) (Cj + ke;) ™ primitive PrimFallA, PrimFallB or PrimCoFall. It was found that
1The rise delay and rise transition time expressions are similar, with the rolgs of P”mCOFal_l provided the best results, while PrimFallA and Prim-
andw, interchanged. FallB provided a smaller degree of accuracy due to the fact that a




Primitive Delay Output Capcitance = 30fF
Mean | Deviation Delay without any constraint = 934ps
InvRise 031% | 2.84% Model Delay | SPICE Delay| Error | Area
InvFall 129% | 2.82% (ps) (ps)
PrimFallA | -1.28% | 4.74 % 840 835 0.59% | 6.67
PrimFallB 1.07 % 2.95 % 745 752 -0.94%| 7.75
PrimRiseA | -0.67 % | 3.59 % 6355 670 -2.30 % | 10.01
PrimRiseB | 0.13% | 0.93% 560 594 -6.07 %] 14.05
PrimCoFall | -0.68 % | 2.96 % Table 3: Comparison of Model Delay for C17 with SPICE
PrimCoRise| -0.35% | 1.79%
AOI12Fall | 0.87% | 6.27% Circuit Unsized| Unsized | Tspec Sized Execution
SegFall 746% | 4.73% Delay (ns)| Area um) | (ns) | Area (um) Time
. Drirmiti o C432 2.517 403.5 2.391 458.09 69s
Table 1: Primitive Validation 5265 49939 130s
Cate Delay 2.175| 595.06 173s
Output Transition] Mean | Deviation g éig ggggg ggs
v Rise 0.31% | 2.83% : : S
Fall 1.29 % 282 % C880 2.295 721 2.180 722.63 4s
Nor2 Rise 182% | 256% i-ggg ;gggj %}5
Fall 11.10%| 5.06 % 1836| 75294 42:
Nand?2 Rise 5.18% 6.17 % 1'721 775'31 65
Fall -0.46% | 3.58% 1606| 84784 895
Nor3 Rise 0.24% | 1.76 % : ' S
Fall 24.2 % 764 % C499 3.644 1023 3.462| 1023.35 3s
Nand3 Rise 921% | 5.98% g'ggg igéigg 1985
Fall 1.26% | 2.29% >o15| 1048.99 51:
AOI3 Rise 521 % 6.38 % 2'733 1104'73 166
Fall 0.86% | 6.27% : : S
. . 2.551| 1233.98 384s

Table 2: Gate Validation Table 4: Results of sizing various circuits

three input gate was mapped to a two-input primitive using the conreported, and the results of running the sizing algorithm with the
cept of an equivalent width of two series transistors. It is observegmproved model have also been included.

that all of the errors that are above 2% are obtained whemiaput
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