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Abstract
This paper derives a methodology for developing accurate con-

vex delay models to be used for transistor sizing. A new rich class
of convex functions to model gate delay is presented and the cir-
cuit delay under such a model is shown to be equivalent to a convex
function. The richness of these functions is exploited to accurately
model gate delay for modern designs. The delay model is incorpo-
rated into a transistor sizing algorithm based on TILOS. The models
were characterized by using a set of grid points and then validated
using a disjoint data set. The models were found to be within about
10% of SPICE for nearly all of the gate types considered. Also pre-
sented are the experimental results of sizing various test circuits.

1 Introduction
Transistor sizing, an important problem in designing high per-

formance circuits, has traditionally been formally defined as [1]:

minimize Areaor Power

subject to Delay � Tspec: (1)

There have been many significant attempts to solve this problem, for
example, [1, 2]. Most published approaches use the Elmore delay
model [3] for timing calculations, and a breakthrough observation
in [1] was that the circuit delay under this model is a posynomial
function (to be defined later) of the transistor sizes. The advantage
of this functional form is that under a simple variable transforma-
tion, the problem can be transformed into a convex optimization
problem for which it is guaranteed that any local minimum is also a
global minimum.

It is generally accepted that the use of the Elmore delay model
at the transistor level is very inaccurate for modern designs. This
inaccuracy can be attributed to its failure to accurately consider im-
portant factors such as input transition times, position of the switch-
ing transistor, sizes of fighting complementary transistors, temporal
relation between inputs and transistor nonlinearities. As a result,
exact optimization under this model may lead to a wrong solution
to the sizing problem since the timing model has a bad correlation
with reality. More precisely, the solution may be suboptimal in that
it meets the timing specification without minimizing the cost func-
tion, or entirely inaccurate, in the sense that it may not meet the
timing constraints at all.

Several approaches for accurate timing modeling have been pro-
posed in the past. For example, one could model gate delays by
developing closed form expressions [4]. Much work has been done
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in the development of closed form models for inverters and then
mapping other gates to an equivalent inverter [5, 6]. An alternative
approach uses, a look-up table constructed using experimentally de-
rived delay data for various configurations, with intermediate data
points being derived by interpolation methods, as in the delay model
in [7]. However, this approach requires storage of large number
of data points to guarantee accuracy and hence is very expensive
in terms of memory requirements. Neither the closed-form model-
ing approach nor the table-look-up modeling method is particularly
well suited for optimization since the modeling functions typically
do not possess any convexity properties and cannot be used in the
context of a formal optimization algorithm that is guaranteed to find
the global minimum in a reasonable time. Moreover, it is not neces-
sarily true that these models will have continuous derivatives, or, in
the case of look-up tables, any derivative at all. Therefore, there is a
need for new models that permit accurate delay computations, while
maintaining convexity properties suited for optimization. This work
derives a methodology for developing such models.

The theoretical underpinning of this approach is a result that de-
fines a new class of functions that are shown to work well for mod-
eling circuit delays. These functions are provably convex under a
variable transformation that is explained in next section. The set
of functions from which these functions are chosen includes the set
of posynomials as a proper subset, and therefore, we refer to these
functions asgeneralized posynomials. This work uses a curve-fitting
approach to find a least-squares fit from the delay function, com-
puted by SPICE over a grid, to a generalized posynomial in order to
provide guarantees on accuracy of the delay model.

2 Background
2.1 Convex optimization

A convex programming problem, also referred to as a convex
optimization problem, involves the minimization of a convex func-
tion over a convex set. A problem of the type

minimize f (x) (2)

such that gi(x)� 0;1� i �m

x 2Rn

is a convex programming problem iff (x) andgi(x);1� i �m, are
convex functions. In the context of transistor sizing, this requires
the derivation of convex closed-form expressions for the path delay;
as a result, this will satisfy the requirement of relation (2) that each
timing constraint is of the formgi(x) � 0. All of these statements
constitute well-known facts [1,2].

2.2 Posynomial delay modeling
The delay characteristics of the output waveform at a gate may

be represented by two numbers:
(1) thedelay, i.e., the difference in the time when the output wave-
form crosses 50% of its final value, and the corresponding time for
the input waveform.
(2) theoutput transition time, i.e., the time required for the wave-
form to go from 10% to 90% of its final value.



In much of the previous work on transistor sizing, the circuit
delay has been expressed in the form of a class of functions known
as posynomials. A posynomial is a functionp of a positive variable
x 2 Rn that has the form

p(x) = ∑
j

γ j

n

∏
i=1

x
αi j

i (3)

where the exponentsαi j 2 R and the coefficientsγ j 2 R+. In the
positive orthant in thex space, posynomial functions have the useful
property that they can be mapped onto a convex function through an
elementary variable transformation,(xi) = (ezi ).

The Elmore delay model used, for example, in TILOS [1] and
iCONTRAST [2], used the following form of expressions for the
path delay.

D(x) =
n

∑
i; j=1

ai j
xi

xj
+

n

∑
i=1

bi

xi
+K (4)

whereai j ;bi ;K 2R+ are constants and,x = [x1; � � � ;xn] is the vector
of transistor sizes. Notice that the Elmore delay expressions are a
subset of the set of posynomials; specifically they are posynomials
whose exponents belong to the setf-1,0,1g.

3 Modeling using generalized posynomials
3.1 Generalized posynomials

Posynomials and convex functions are a rich class of functions
and the basic motivation for this work is that better delay estimates
can be obtained by fully exploiting this richness.

A generalized posynomial functionGk(x);x 2 Rn, wherek� 0
is called the order of the function, is defined recursively as follows:

1. A generalized posynomial of order 0,G0, is the posynomial
form defined earlier:

G0(x) = ∑
j

γ j

n

∏
i=1

x
αi j

i ; (5)

where the exponentsαi j 2 R and the coefficientsγ j 2R+.

2. A generalized posynomial of orderk� 1 is defined as

Gk(x) = ∑
j

γ j

n

∏
i=1

�
Gk�1;i(x)

�αi j ; (6)

where the exponentsαi j 2 R+ and the coefficientsγ j 2 R+,
andGk�1;i(x) is a generalized posynomial of orderk�1.

Specifically, the generalized posynomial of first order, is given
by

f (x) = ∑
i

γi

m

∏
j=1

 
pi

∑
l=1

ωi jl

n

∏
s=1

x
ai jls
s

!βi j

(7)

where eachβi j 2R+, eachai jls 2 R, eachγi 2R+, and eachωi jl 2

R+. Stripping Equation (7) of its complicated notation, one may
observe that the term in the innermost bracket represents a posyn-
omial function. Therefore, a generalized posynomial of first order
is similar to a posynomial, except that the place of thexi variables
in Equation (3) is taken by a posynomial. Similarly, a generalized
posynomial of orderk uses a generalized posynomial of orderk�1
in place of thexi variables in Equation (3).

The following theorem parallels the relationship between posyn-
omials and convex functions.

Theorem 1: If the range of interest ofx is restricted to the positive
orthant where eachxi > 0, then under the variable transformation
from the spacex 2 Rn to the spacez 2 Rn given byxi = ezi , the
generalized posynomial functionf of equation (6) is mapped to a
convex function in thez domain.
Proof: It is well known that a generalized posynomial of order
0, G0(x), is transformed to a convex function,G0(z) in the z do-
main [8]. Since the functional form of the functionsGk(x);k > 0,
is different from that ofG0(x) due to the additional nonnegativity
constraint on theαi j variables, they are treated separately.

The proof of Theorem 1 proceeds by consideringGk(z) for k�
1; to prove its convexity, it is enough to prove the convexity of

L = P
m

∏
i=1

(Gk�1;i)
βi ;βi � 0; (8)

since a sum of convex functions is convex. The gradient and Hessian
of this function are, respectively, given by

5L = P
m

∑
i=1

( 
m

∏
j=1;i 6= j

(Gk�1; j)
β j

!
βi(Gk�1;i)

βi�15Gk�1;i

)

= L
m

∑
i=1

βi 5Gk�1;i

Gk�1;i
(9)

52L = L

( 
m

∑
i=1

βi 5Gk�1;i

Gk�1;i

! 
m

∑
i=1

βi 5GT
k�1;i

Gk�1;i

!
+ (10)

m

∑
i=1

βi

G2
k�1;i

�
Gk�1;i 5

2 Gk�1;i �5Gk�1;i 5GT
k�1;i

�)

We will prove thatL is a convex function by showing that the ma-
trix 52L is positive semidefinite. Since the first term is easily seen
to be positive semidefinite, the functionL is convex if(Gk�1;i 5

2

Gk�1;i� 5Gk�1;i 5GT
k�1;i) is positive semidefinite. We will now

show this by proving the following result, by induction and the proof
of Theorem 1 follows as an immediate consequence. The matrix�
Gk5

2 Gk�5Gk5GT
k

�
is positive semidefinite for allk� 0.

Basis caseConsider a zeroth order generalized posynomial given by

G0 =
p

∑
i=1

ωi

n

∏
j=1

eai j zj =
p

∑
i=1

hi ;

wherehi = ωi ∏n
j=1eai j zj . It is easy to see that the value of eachhi

is positive for allz; this observation is used later in the proof.
Now consider the matrixH =

�
G05

2 G0�5G05GT
0

�
. The

(q; l)th term of this matrix is given by

Hql =

 
p

∑
i=1

hi

! 
p

∑
i=1

hiaiqail

!
�

 
p

∑
i=1

hiaiq

! 
p

∑
i=1

hiail

!

=
p

∑
i=1

p

∑
j=1; j 6=i

�
hihj

�
aiq�ajq

�
�al
�

=
p

∑
i=1

p

∑
j=i+1

�
hihj

�
aiq�ajq

�
�
�
ail �ajl

��

Therefore, we can write

H =
p

∑
i=1

p

∑
j=i+1

hihj
�
~ai �~aj

�
�
�
~ai �~aj

�T

where~ai = [ai1; ai2; � � �ain]
T . Therefore, H is positive definite since

eachhi > 0.



Induction hypothesis: For a generalized posynomialGk�1(z) of
orderk�1, wherek� 1,

Gk�1(z)5
2 Gk�1(z)�5Gk�1(z)5Gk�1(z)

T

is positive semidefinite.
For the inductive step, we write

Gk =
r

∑
i=1

Lk;i =
k

∑
i=1

Pi

mi

∏
j=1

(Gk�1;i; j)
βi; j ; (11)

so that eachLk;l is of the form of the functionL defined in Equa-
tion (8). We may use the expressions for the gradient and Hessian
of L in Equations (9) and (10) to write

Gk5
2 Gk�5Gk5GT

k

=

 
r

∑
l=1

Lk;l

! 
r

∑
l=1

52Lk;l

!
�

 
r

∑
l=1

5Lk;l

! 
r

∑
l=1

5Lk;l

!T

=
r

∑
l=1

r

∑
q=1

�
Lk;l 5

2 Lk;q�5Lk;l 5LT
k;q

�

If we set

~uj =
m

∑
j=1

β j 5Gk�1;i; j

Gk�1;i; j
; (12)

this may be rewritten as

r

∑
l=1

r

∑
q=1

Lk;l (Lk;qf~uq~u
T
q +

m

∑
i=1

βi

G2
k�1;q;i

(Gk�1;q;i 5
2 Gk�1;q;i �

5Gk�1;q;i 5GT
k�1;q;i)g)�Lk;l Lk;q~ul~u

T
q

=
r

∑
l=1

r

∑
q=1

Lk;l Lk;q

m

∑
i=1

βi

G2
k�1;q;i

(Gk�1;q;i 5
2 Gk�1;q;i �

5Gk�1;q;i 5GT
k�1;q;i)+

r

∑
l=1

r

∑
q=l+1

Lk;l Lk;q

m

∑
i=1

(~uq�~ul )(~uq�~ul )
T ;

which is positive semidefinite by the induction hypothesis.QED.

3.2 Delay estimation
3.2.1 Outline of the delay modeling approach
Our characterization approach uses sizes of transistors belonging to
the gate along with the traditional cell characterization parameters,
namely input transition time and load capacitance. We refer to these
input parameters as characterization variables.

We begin with an explanation of the timing model for an in-
verter, such as the one shown in Figure 1; this model is generalized
to complex gates in subsequent sections. The aim is to be able to
estimate delay as a function of the pmos and nmos transistor widths,
wp andwn, the input transition timeτ, and the output load capac-
itance,CL. Therefore, for an inverter,wp, wn, τ, andCL form the
set of characterization variables. These variables reflect the set of
variables that are generally considered to be important in defining
the delay of a gate in most models.

We attempted the use of several types of functions to achieve the
desired levels of accuracy. The general form of expression that pro-
vided consistently good results for different gate types is as follows

Delay=
m

∑
j=1

Pj �
n

∏
i=1

(x∆
i +ci j )

βi j +C (13)

Vdd

CL

Wp

Wn

τ

Figure 1: Inverter circuit
Here, thexi ’s are characterization variables, and theci j ’s, βi j ’s, C,
andPj ’s are real constants, referred to collectively ascharacteriza-
tion constants. The parameter∆ is set to either -1 or 1, depending
on the variable, as will soon be explained. The problem of charac-
terization is that of determining appropriate values for the charac-
terization constants. We will show in Section 4 that the use of this
form of function implies that the circuit delay can be expressed as a
generalized posynomial function of the transistor widths.

Due to the curve-fitting nature of the characterization procedure
it is not possible to ascribe direct physical meanings to each of these
terms. However, it can be seen that the fall delay increases asCL,
wp andτ are increased, and decreases aswn is increased, implying
that an appropriate choice for the parameter∆ for the first three vari-
ables is 1, and that forwn is -1. Note that this is not as restrictive as
the Elmore form since, among other things, theβi j ’s andci j ’s pro-
vide an additional degree of freedom that was not available for the
Elmore delay form. A similar argument may be made for the rise
delay case.

3.2.2 Circuit simulations and curve-fitting
A two-step methodology is adopted to complete the characteriza-
tion. In the first step, a number of circuit simulations are performed
to generate points on a grid. In the second, a least-squares procedure
is used to fit the data to a function of the type in Equation (13).

A series of simulations is performed to collect the experimental
data using the HSPICE circuit simulator. The total number of data
points, N, increases exponentially with the number of characteri-
zation variables. For the inverter circuit with four characterization
variables andd data points for each variable to cover the range of
interest, the total number of data points,N would bed4. Therefore,
it is important to choose the data points carefully; in particular, it is
not necessary to choose an even grid for the transistor widths and a
smaller granularity of points can be chosen for largerwn’s in case of
the fall transition.

The determination of the characterization constants was perform
ed by solving the following nonlinear program that minimizes the
sum of the squares of the percentage errors over all data points.

minimize
N

∑
i=0

�
Destim(i)�Dactual(i)

Dactual(i)

�2

(14)

whereN is the number of data points,Destim(i) andDactual(i), re-
spectively, represent the values given by Equation (13), and the cor-
responding measured value at theith data point. This nonlinear pro-
gramming problem is solved using the MINOS optimization pack-
age [9] to determine the values of characterization constants.

3.3 Characterization of a set of primitives
For a library-based design, a full characterization of all cells is a

viable alternative and its complexity is comparable to characterizing
the library using any other means. For general full custom designs,
the number of SPICE data points to be generated for the curve fit in-
creases exponentially with the number of characterization variables.
It is computationally expensive to perform such a large number of
simulations and hence an alternative strategy is suggested.

An alternative strategy is to precharacterize a set of logic struc-
tures such that any gate can be mapped to one of the elements of



this set with some acceptable loss of accuracy. It is important to
note that even under this procedure, the transistor sizing approach
will size each transistor individually, and this method is only used
for delay estimation.

One straightforward technique that may be used is to map all
of the gates to an “equivalent inverter” [5, 6], and use the inverter
characterization to estimate delays; the sizes of the pull-down nmos
transistor and the pull-up pmos transistor of this inverter reflect the
real pull-down or pull-up path in the gate. The widths of these
new transistors are referred to as the equivalent widths. The equiv-
alent width calculation is based on modeling the “on” transistors as
conductances, and the equivalent width corresponds to the effective
conductance of the original structure. Accordingly, if two transis-
tors of widthsw1 andw2 are connected in parallel, the equivalent
width is defined asw1+w2 and if the transistors are connected in

series, the equivalent width is defined as
�
w�1

1 +w�1
2

��1
.

However, such a reduction has shortcomings. Consider the nand
gate in Figure 2(a), whose equivalent inverter approximation is illus-
trated in Figure 2(b). The node capacitances at nodes other than the
output are not accounted for in this approximation. Also, the same
mapping will be used irrespective of whether input A or B is switch-
ing, whereas in reality, these two cases correspond to different delay
values. This issue is addressed in the section 3.3.1.

Vdd

W1+W2

Weq=W3*W4/(W3+W4)

CLWeq

Vdd

Α

Α

Β

W2W1
B

W3

W4

CL

Figure 2: Mapping of a nand gate
We attempt to reduce the errors caused because of these ap-

proximations in our mapping procedure by defining a set of basic
primitives and mapping arbitrary complex gates to these primitives.
We have developed primitives for three distinct types of logic struc-
tures namelysimple gates, complex gatesandsequential elements
for both fall and rise transition.

3.3.1 Simple gates
For simple gates, we have developed one input, two input and three
input primitives. Single input primitive is basically an inverter. We
refer to an inverter as a primitive because of the fact that mapping
procedure along with inverters also maps NOR gates for fall transi-
tion and NAND gates for rise transition on an inverter. Since this
primitive is identical to the inverter described in Section 3.2.1, it is
not discussed any further.

Here we emphasize that ann-input primitive does not mean that
it is a primitive only for then-input gates. Any gate having equal
to or more thann inputs would be mapped to ann-input primitive
depending upon the position of the switching transistor.

The set of two input primitives for fall transition at the output is
shown in Figure 3 (the presence of a load capacitance at the output
is implicit and is not shown). Timing analysis procedure in our tool
assumes only single input transitions, and hence there can only be
one pair of pmos and nmos transistors switching at a time.

Consider the two-input nand gate shown in Figure 3(a). For the
fall delay, if the input transition occurs at input A, then the gate is
mapped to Figure 3(b). Note that since the output is being pulled
down in the case of a fall delay calculation, the pull-down is re-
tained while the pull-up is replaced by a single transistor, and the
characterization equations of Figure 3(b) are used to estimate the
delay. In a similar fashion, when the input transition occurs at input

B

Vdd

B

CL

PrimFallA PrimFallB

out
in 1

outin

1

(b) (c)(a)

 C

out

A

Figure 3: 2-input primitives for fall transition

B of Figure 3(a), the gate is mapped to Figure 3(c). A similar proce-
dure is applied for rise delays, i.e., the pull-up part is retained while
the pull-down part is replaced by an equivalent nmos transistor. If
we assume single input transitions, only one of the pmos transistors
will be on during the rise output transition. The pmos transistor that
is off contributes only as a loading capacitance, and hence for rise
delay calculation, the nand gate is mapped to an inverter. Similarly,
2-input primitives, containing two pmos transistors in series with an
nmos transistor, namely PrimRiseA and PrimRiseB, are developed
that can accurately model NOR gates and NOR gate-like structures.

For simple gates with more than two inputs and complex gates,
an expanded set of primitives is necessary. The set of primitives used
to approximate such gates is shown in Figure 4. It should be noted
that these are not the only primitives on which gates with more than
three inputs will be mapped. For example, consider a three input
NAND gate and the case where the latest arriving input is the one
connected to the topmost transistor in the nmos chain. In this case,
the NAND gate will be mapped to the two input primitive PrimFallA
shown in Figure 3(a); the two nmos transistors at the bottom are
collapsed into one transistor of equivalent width.

PrimCoFallPrimCoRise

out

0

0

in 1

1

in

out

Vdd Vdd

(a) (b)

Figure 4: Primitives for mapping of simple and complex gates

3.3.2 Complex gates
In case of simple gates with only one transistor chain, the internal
node capacitances are inherently taken into account during the mod-
eling phase. For example, in the case of AOI gates there is more than
one parallel chains of transistors. Hence if AOI gates are mapped
(except when all the transistors connected to the output and belong-
ing to the nonconducting chains are off) on to the primitives devel-
oped for simple gates, then the internal node capacitances would not
be correctly accounted for, resulting in inaccurate delay values. We
solve this problem by developing another set of primitives. For AOI
gates we make use of the observation that the worst case delay cor-
responds to one conducting chain of transistors between the output
and supply, while all other chains are nonconducting. This shows
that primitives for AOI gate can be developed by addition of a non-
conducting transistor chain in parallel to the transistor chain in the



simple gate primitive. A few example primitives for AOI gates are
shown in the Figure 5. Similarly, a limited set of primitives can be
developed for general complex gates.

AOI22FALL

VddVdd

AOI12FALL

1

0

1

01

Figure 5:Examples of AOI Primitives

3.3.3 Sequential elements
A static sequential element normally consists of a set of pass transis-
tors and a few inverters. An example sequential element is shown in
Figure 6. Since an inverter that drives a transmission gate forms a
single channel connected component, as shown in Figure 6, we de-
velop a separate model for this component, and in conjunction with
the inverter model explained earlier, we are now able to model every
channel connected component in this sequential element. An advan-
tage of the ability to develop accurate models for the sequential ele-
ments is the simplicity in constraint formulation in the across-latch
optimization.

Primitive Sequential Element

Figure 6:Sequential Element and Primitive

4 Proof of convexity of the delay model
The ensuing discussion shows that the delays of individual paths

satisfy the property of convexity, and uses this fact to prove the con-
vexity of the optimization problem. It is to be emphasized that this
discussion is purely for expository purposes; the optimizer used in
this work for sizingdoes notrequire the enumeration of all paths,
and performs the optimization efficiently by checking, through a
timing analysis, whether the constraints are satisfied or not. For de-
tails, the reader is referred to [1].

Let the critical path of the circuit be represented by a set of
stages, where each stage represents a gate. Let us first consider a
scenario with fully characterized gates where no primitives are used,
but the delay is characterized in terms of the size of each transis-
tor. Then, substituting the characterization variables explicitly into
Equation (13), we see that the fall delay of the gate corresponding
to stagel has the following form:

Delayl = ∑
i

Pi � (w
�1
n1 +cn1)

βn1 � � �(w�1
nmn

+cnmn)
βnmn

(wp1+cp1)
βp1 � � �(wpmp +cpmp)

βpmp (τi�1+cτ)
βτ Π j(Cj +cCj

)
βCj

and the output fall transition time of the gate in stagel has the form1

τl = Q� (w�1
n1 +kn1)

γn1 � � �(w�1
nmn

+knmn)
γnmn (wp1+kp1)

γp1 � � �

(wpmp +kpmp)
γpmp (τi�1+kτ)

γτ Π j (Cj +kCj
)
γCj

1The rise delay and rise transition time expressions are similar, with the roles ofwn

andwp interchanged.

wherePi >0,Q>0,cni,cpi,kni,kpi,βni,βpi, γni,γpi 8i;kCj
,cCj

8 j ,kτ,cτ,
βCj

,γCj
,βτ,γτ are real constants. Thewni andwpi values, as usual, re-

fer to the nmos and pmos transistor sizes,τ refers to the transition
time, and theCj ’s correspond to the capacitances at the gate output
and at internal nodes. We will show that the delay and transition
time functions have the form of generalized posynomials.

The capacitance at each internal or gate output nodei,Ci is mod-
eled by

Ci = ∑
j

k0jwj +k00 (15)

where thek
0

j andk00 values are real constants, andwj ’s represent the
equivalent transistor widths in the circuit.

From the Equation (15) we can see that output transition time is
represented by a generalized posynomial. Additionally, the loading
capacitance given by equation (15) has the form of a generalized
posynomial. Using Theorem 1, it can be seen that when the in-
put transition time and loading capacitance expressions are substi-
tuted in Equation (15), the resulting expression is also a generalized
posynomial. The objective function is chosen as a weighted sum of
the transistor sizes, which is clearly a generalized posynomial form.
Using identical arguments to [1, 2], since the maximum of convex
functions is convex, the problem of area minimization under delay
constraints for “template” gates can be shown to be a convex pro-
gramming problem. For gates that do not adhere to the template, the
mapping techniques described in Section 3.3 may be used to model
the delay function. We will now show that in such a case, the delay
function continues to remain in the generalized posynomial form.
Let w

0

1; � � � ;w
0

m represent transistor widths in the primitives the gates
are mapped to. In the process of mapping the gates, the transis-
tor widths in the primitives can be expressed in terms of the actual
transistor widths in the circuit. Letw1; � � � ;wn represent the actual
transistor widths in the circuit. Thenw

0

’s can be expressed as

w0�1
i = ∑

q2f1���ng

w�1
q ;1� i �m (16)

All occurrences of value ofw0�1
i , which is a basic variable in the

characterization equation (see the last paragraph of Section 3.2.1),
can be substituted as above in Equation (15), maintaining the gener-
alized posynomial property of the delay equation.

5 Experimental Results
Table 1 shows the validation results of different primitives, pro-

posed in Section 3.3, with respect to SPICE. The purpose of listing
these validation results on the primitives is to emphasize that tran-
sistor nonlinearities can be effectively modeled by convex functions
and to test the validity of our basic idea of modeling delay as convex
functions. Referring to Equation (13), a value ofj = 1 was chosen,
and it was observed that the use of higher values forj did not of-
fer significant improvements in accuracy. The characterization was
performed in a 0:25µm technology by varying transistor widths to
up to 80µm, τ from 20 to 300 ps (10% to 90%) andCL up to 800
fF. We emphasize that accurate fits are required only in the region
where sizing constraints are satisfied. For example, if output tran-
sition time violates the specification then the optimizer will ensure
that its value is reduced to a point in the feasible region, and the
convexity of the functions will force the optimization to move to
this region after some iterations.

Table 2 shows the validation results of various gates with respect
to SPICE. We stress here that all the possible mappings for a gate
are considered and the worst case results are shown in the table.
For example, the fall transition on gate Nand3 can map on to either
primitive PrimFallA, PrimFallB or PrimCoFall. It was found that
PrimCoFall provided the best results, while PrimFallA and Prim-
FallB provided a smaller degree of accuracy due to the fact that a



Primitive Delay
Mean Deviation

InvRise 0.31 % 2.84 %
InvFall 1.29 % 2.82 %

PrimFallA -1.28 % 4.74 %
PrimFallB 1.07 % 2.95 %
PrimRiseA -0.67 % 3.59 %
PrimRiseB 0.13 % 0.93 %
PrimCoFall -0.68 % 2.96 %
PrimCoRise -0.35 % 1.79 %
AOI12Fall 0.87 % 6.27 %

SeqFall 7.46 % 4.73 %

Table 1: Primitive Validation

Gate Delay
Output Transition Mean Deviation

Inv Rise 0.31% 2.83 %
Fall 1.29 % 2.82 %

Nor2 Rise 1.82 % 2.56 %
Fall 11.10 % 5.06 %

Nand2 Rise 5.18 % 6.17 %
Fall -0.46 % 3.58 %

Nor3 Rise 0.24 % 1.76 %
Fall 24.2 % 7.64 %

Nand3 Rise 9.21 % 5.98 %
Fall 1.26 % 2.29 %

AOI3 Rise 5.21 % 6.38 %
Fall 0.86 % 6.27 %

Table 2: Gate Validation

three input gate was mapped to a two-input primitive using the con-
cept of an equivalent width of two series transistors. It is observed
that all of the errors that are above 2% are obtained when ann-input
gate is mapped to ak-input primitive wherek< n. If some gate type
gives unacceptable results for some input transition we can further
enhance the accuracy by characterizing the model for that specific
scenario over a range of parameter values.

To verify whether we get reasonable accuracy with our model
we optimized the C17 benchmark from ISCAS85 benchmark suite
with an accurate convex optimizer, and then ran SPICE on the op-
timized circuit. Table 3 shows the validation results. The unsized
delay corresponds to the circuit with all transistor sizes set to min-
imum. The circuit is optimized for the target delays that vary from
60% to 90% of the unsized delay, as listed in column one. Columns
two and three show the SPICE delay of the optimized circuit and
worst case errors in the output delay measured by our model as com-
pared to SPICE. The area of the circuit is shown in the last column.

The delay models developed in this paper were incorporated into
the TILOS algorithm described in [1] in a C program. The results
of running the algorithm on various test circuits are shown in Ta-
ble 4. The cost function is set to be the area of the circuit, estimated
as the sum of the transistor sizes. We first measured unsized delays
using our model. The circuits are then optimized for target delays of
70% to 95% of the unsized delay. The results show that our convex
model, in addition to being very accurate is also computationally
efficient when used in the inner loop of a TILOS-like iterative tran-
sistor sizing algorithm.

6 Conclusion
We have presented a new delay model for CMOS gates that is

better suited for modern technologies than the Elmore model, but
maintains the convexity properties. A new class of functions called
generalized posynomials is proposed and its members are shown to
have the same relation to convex functions as posynomials. Experi-
mental results illustrating the effectiveness of this model have been

Output Capcitance = 30fF
Delay without any constraint = 934ps

Model Delay SPICE Delay Error Area
(ps) (ps)
840 835 0.59 % 6.67
745 752 -0.94 % 7.75
655 670 -2.30 % 10.01
560 594 -6.07 % 14.05

Table 3: Comparison of Model Delay for C17 with SPICE

Circuit Unsized Unsized Tspec Sized Execution
Delay (ns) Area (µm) (ns) Area (µm) Time

C432 2.517 403.5 2.391 458.09 69s
2.265 499.39 130s
2.175 595.06 173s
2.136 603.08 179s
2.013 787.57 270s

C880 2.295 721 2.180 722.63 4s
2.066 727.74 11s
1.950 735.34 21s
1.836 752.94 42s
1.721 775.31 65s
1.606 847.84 89s

C499 3.644 1023 3.462 1023.35 3s
3.279 1025.68 9s
3.097 1031.27 18s
2.915 1048.99 51s
2.733 1104.73 166s
2.551 1233.98 384s

Table 4: Results of sizing various circuits

reported, and the results of running the sizing algorithm with the
improved model have also been included.
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