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Abstract

An e�cient solution to the wire sizing problem (WSP)
using the Elmore delay model is proposed. Two formu-
lations of the problem are put forth: in the �rst, the
minimum interconnect delay is sought, while in the
second, we minimize the net delay under delay con-
straints at the leaf nodes; previous approaches solve
only the former problem. Theoretical results on these
problems are proved, and a sensitivity-based algo-
rithm is devised. It is shown experimentally that the
second formulation provides signi�cantly better engi-
neering solutions.

1 Introduction

It is rapidly becoming obvious that with the current
trends in technology, interconnect delays have become
an increasingly dominant factor in determining circuit
speed. Until recently, interconnect resistance was in-
signi�cant, while its capacitance was not, and hence
optimal interconnect design frequently involved ensur-
ing that all wire sizes were minimal. However, with
advancement in technology, reduction in circuit ge-
ometries, increases in circuit speeds, and the advent
of MCM's, the wire sizing problem (WSP) has become
signi�cant.

The problem of wire sizing has not received very
much attention until recently. Cong et al. presented
some work in the area in [1, 2]. The approach in [1]
used a delay model based on an upper bound [3] on
the Elmore delay, and minimized the delay of the in-
terconnect under minimum and maximumwire width
constraints. This was extended in [2], where the El-
more delay was directly used to perform the timing
optimization. The form of the Elmore delay model
in this work makes the assumption that the critical
leaf nodes of the interconnect tree are provided by the
user. This information, however, may not be available
in all design situations, particularly in iterative opti-
mization where the critical sinks may change between
iterations. A weighted sum of the Elmore delays to
these leaf nodes is minimized, where the weights are
apparently user-de�ned.

In this work, we �rst use a form of the Elmore de-
lay that does not require the critical leaf nodes to be
speci�ed. Like [1, 2], this work assumes that the in-
terconnect network to be optimized is a tree struc-
ture. The objective here is to minimize the maximum
of all Elmore delays at leaf nodes of the interconnect
tree. Under this model, the separability property of
the models in [1, 2] does not hold, and hence those
algorithms will not provide the solution to this prob-
lem. Under this di�erent delay model, we prove some
properties of the WSP.

The route to formulating the problem is described
in Section 2, and the two meaningful formal state-
ments of the problem are suggested in Section 3. One
formulation minimizes the overall delay of the tree,
while the other minimizes the wiring area under delay
constraints at leaf nodes of the tree. Properties of the
two suggested formulations are described in Section 4,
to lay the basis for an e�cient algorithm to solve the
problems, presented in Section 5. Finally, we present
experimental results in Section 6, and conclude the
paper in Section 7.

The results of this work also show that a goal of
�nding the absolute minimum delay of an intercon-
nect tree does not provide good engineering solutions.
Instead, a delay target of even 10-15% over the mini-
mum delay can lead to a substantial savings in wiring
area. The formulation that performs wire sizing un-
der delay constraints serves to illustrate the area-delay
tradeo�.

2 Formulation of the Problem

A. Modeling Interconnect and Interconnect Delay
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Figure 1: RC model of interconnect

This work models a wire as a succession of RC seg-
ments, shown in Figure 1, connected in series. The
resistance, Ri, and capacitance, Ci, of the i

th segment
are given by the formul�

Ri = �li=wi Ci = �li � wi (1)

where wi and li are, respectively, the width and length
of the ith segment. Under the above model, any inter-
connect tree can be modeled using an equivalent RC
tree. In this work, we will use the words width and
size interchangeably.

In an actual circuit, the root node is connected to
a driver with equivalent resistance Rd. Moreover, in
addition to wire capacitances, there may be several
loading capacitances along the length of the wire. The
Elmore delay to any node of the corresponding RC tree
may easily be calculated using Eq. (2).

The delay Td;i of an RC tree is given by the well-
known Elmore delay formula [3]. If Pi is the unique



path from the root of the RC tree to node i, and
desc(j) represents all nodes that are descendants of
node j in the tree, then according to this formula, the
delay to node i is given by

Td;i =
X

j2Pi

Rj

X

k2desc(j)

Ck (2)

We take the Elmore delay of a tree as the maximum
of the Elmore delays to any leaf node. An advantage
of this de�nition is that the delay value for the tree
is a physical quantity that a circuit designer can re-
late to immediately. Moreover, as will be shown later,
this provides a natural extension into the problem of
wire sizing under delay constraints. Note that our def-
inition of the Elmore delay of a tree di�ers from the
model in [2], where the user is required to identify
the critical leaf nodes (we require no such user input),
and a weighted sum of the Elmore delays to these leaf
nodes is minimized.

B. Properties of the General WSP

We begin by proving a few results on the optimal
wire sizes. Some of these results have been proved in
[1, 2] for their delay model. We show here that some
of those results are also valid under the Elmore delay
model that we have used.
De�nition 1 A wire width assignment f for a tree T
is an n-tuple [w1; � � � ; wn], where n is the number of
wires, and wi is the width of wire i.
De�nition 2 Given a routing tree T, a wire width
assignment f on T is a monotonic assignment if wp �
wc whenever wire Sp is an ancestor of wire Sc.
De�nition 3 Given two wire width assignments f and
f 0 on the same tree T, f dominates (is dominated by)
f 0 if and only if wi(f) � wi(f 0) (wi(f) � wi(f 0)) for
all wires i 2 T.
De�nition 4 A wire assignment f for a tree T is
suboptimal if there exists another wire assignment f 0

for T, di�erent from f , such that f dominates f 0, and
the Elmore delay to every node in T under assignment
f 0 is no greater than than that under assignment f .

Note that the de�nition of an optimal assignment
here is open to interpretation under any formulation
that uses the Elmore delay model, and that we have
not restricted ourselves to a strict de�nition of opti-
mality at this point. Under any reasonable de�nition
of optimality, De�nition 4 must hold.

The result in Theorem 1 below is, therefore, similar
to, but more general than the analogous results pre-
sented in [1, 2] due to the more general de�nition of
optimality that has been used here.
Theorem 1 [4] Any nonmonotonic wire width assign-
ment f� is suboptimal.
Theorem 2 [4] Let i be a leafnode, and let Pi be the
path from the root node to i. Then the delay from the
root to node i cannot be decreased by increasing any
wire size that does not lie on Pi.

C. Does Separability Hold for this Delay Model?

Under the delay models used in [1, 2], it is shown
that the width of each wire depends only on the

widths of its ancestors and descendants. As a re-
sult, if TSS1; TSS2 � � �TSSk are the single-stem sub-
trees [1] rooted at node N , it has been proven under
their delay models that the optimal wire width as-
signments for TSSi can be determined independently
of TSSj ; j = 1 � � �k; j 6= i. This has been referred to as
separability. By using this property, for a tree with n
wires and r possible wire widths, algorithms of worst-
case complexity O(nr�1) have been proposed.
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Figure 2: Counterexample for separability

Example: Consider the simple example shown in Fig-
ure 2. Assume, for simplicity, the following:

� Each branch resistance is related to the branch
width by the relation, Ri / 1=wi.

� Each branch capacitance is related to the branch
width by the relation, Ci / wi.

� The capacitive load at each branch is as shown in
the �gure.

� The maximum allowable wire size is 15 units.

� The driver has a resistance of 1 unit.

The delays to the two leaf nodes are given by the ex-
pressions:

D1 = K � (1 + 1

x1

)(x1 + x2 + x3 +C1 +C2) + 1

x3

(x3 +C1)

D2 = K � (1 + 1

x1

)(x1+ x2+ x3 +C1 +C2) + 1

x2

(x2 +C2)

where K corresponds to a proportionality constant.
By enumeration, it was found that the minimumdelay
to leaf node 1 occurs when x1 = 10; x2 = 1; x3 = 7,
the minimum delay to leaf node 2 corresponds to the
situation where x1 = 10; x2 = 6; x3 = 1, while the
maximum of the two delays was minimized at x1 =
10; x2 = 4; x3 = 5, which shows that the single-stem
subtrees cannot be optimized independently of each
other.

The reason for this is easy to see. The delay to node
2 depends on the widths x1 and x2 (which act as both
resistors and capacitors) and the width x3 (which acts
as a capacitive load). The optimal delay to node 2
implies that x3 must be minimal; however, this could
cause the delay to node 1 to be too large. At the
optimum, there is a \balance" between the resistance
of x3 that causes a small delay to node 1, and the
capacitance of x3 that causes a small delay to node
2 as well. Thus, the sizing along the path from the
root to node 2 is dependent on the sizes of branches
that are o� this path, and hence separability does not
work. 2



3 Statement of the WSP

As mentioned earlier, several viable de�nitions of
optimality are possible. We now address two prob-
lems:
� Wire sizing for minimum delay
� Wire sizing under delay constraints

The corresponding optimization problems are:

Problem P1 minimize ( max
i2leafnode(T)

di)

subject to wj < wj;spec 8 j = 1 � � �n.

Problem P2 minimize
X

i2T

wi

subject to di < Dspec 8 i 2 leafnode(T)
and wj < wj;spec 8 j = 1 � � �n.

By Theorem 1, for both problems, any nonmonotonic
solution is suboptimal.

4 Properties of the Continuous WSP

De�nition 5: The continuous WSP is the problem
of �nding optimal wire widths to solve the WSP, such
that wire widths may take on any real value. This is in
contrast to the (discrete) WSP where the wire widths
are constrained to be integers.
Property 1: The delay along any path of an RC tree
is a posynomial [5] function of the sizes of wires in the
tree.
Property 2: The continuous WSP's P1 and P2,
stated in Section 3, are unimodal, i.e., any local min-
imum of these problems is a global minimum.

To observe this, note that the simple transforma-
tion, (wi) = (exi ), transforms any posynomial func-
tion of the wi's to a convex function of the xi's [5].
Hence, under this transformation, for both problems,
the objective function as well as the constraints are
convex. As a consequence of the fact that the map-
ping function is one-to-one, it is easy to see that the
optimization problems P1 and P2 are unimodal.

It may be worthwhile to caution the reader here
that it is only the continuous WSP that is unimodal;
the (discrete) WSP is combinatorial, and no such
statements can be made about it. However, a solu-
tion to the continuous WSP gives a lower bound on
the solution to the discrete problem.

5 A Sensitivity-based Algorithm

Since the enumerative solution to the WSP with n
wires and r permissible sizes is of complexity O(rn),
we propose a heuristic.

The heuristic presented here is e�cient and
sensitivity-based. A solution to the continuous WSP
is �rst found; next, the discrete solution is found by
using a mapping algorithm to round o� wire sizes to
the next higher or lower integer. As shown in Sec-
tion 6, this causes an insigni�cant degradation in the
quality of the solution.

The pseudo-code representing the algorithm
WIMIN is shown in Figure 3. In each iteration, the
leafnode with the largest violation is identi�ed; this

BEGIN ALGORITHM WIMIN()
F = bumping factor;
while (stopping criterion not met)
current leaf node = leaf node with the

largest delay violation;
maxsensitivity = 0;
maxsensitivity wire = -1;
for each wire i that is an ancestor

of current leaf node
if F � width(i) > width(predecessor[i])
continue;

if sensitivity Si < maxsensitivity
maxsensitivity = Si;
maxsensitivity wire = i;

if (maxsensitivity wire == -1)
/* minimum delay has been found */
exit;

width(maxsensitivity wire) *= F;
MAP();
END ALGORITHM WIMIN()

Figure 3: Pseudocode for continuous wire sizing.

will be referred to as the current leaf node. We cal-
culate the sensitivity, Si of wire i by �nite di�erences
as

Si =
Delay(F �wi)�Delay(wi)

(F � 1) �wi

(3)

where Delay is the delay from the root node to the
current leaf node, and F is a number just larger than
1. (Although the exact sensitivity of the delay func-
tion could have been computed here, since we will be
taking steps of discrete sizes, it is more bene�cial to
compute the sensitivity as a �nite di�erence.) By The-
orem 2, the delay of the current leafnode can only be
decreased by increasing the sizes of wires that lie on
the path between the root node and that leafnode.
The sensitivity of each such wire is identi�ed, and the
size of the single wire with the minimumnegative sen-
sitivity is bumped up by multiplying it by the same
constant factor, F > 1, as in Equation (3) (typical val-
ues of F are 1.2 or 1.5). This ensures that the delay
to the current leafnode is reduced in every iteration.

Note that due to the monotonicity property, it is
unnecessary to compute the sensitivity for any wire for
which the bumping operation violates monotonicity.

The stopping criterion for the iterations is satis�ed
when no wire has a negative sensitivity, which gives
the solution to the unconstrained ProblemP1, or until
the delay speci�cations at all leaf nodes are met, which
provides the solution to the constrained Problem P2.

The mapping algorithm is illustrated in Fig. 4. It
starts from the leafnode, L, with the largest delay, and
processes each wire on the path between node L and
the root node. If the size of the current wire is an
integer, its size remains unchanged. If not, the change
in the delay to L caused by changing the wire size to
the closest higher (lower) integer, wi+ (wi�) is com-
puted, and one that creates a smaller delay uctuation
is selected. L is now marked as \processed" and the
algorithm proceeds iteratively with the unprocessed
leafnode that has the largest delay. Note that in the
mapping phase, each wire is considered only once.



BEGIN ALGORITHM MAP()
Mark all wires as unprocessed;
Mark all leafnodes as unprocessed;
while (all leafnodes not processed)
current leaf node = unprocessed leaf node

with the largest delay;
for each unprocessed wire i that is an

ancestor of current leaf node
if (width(i) is an integer) continue;
wi+ = dwidth(i)e
wi� = bwidth(i)c
if (j delay(wi+) � delay(width(i)) j

<j delay(wi�) � delay(width(i)) j)
width(i) = wi+;

else
width(i) = wi�;

END ALGORITHM MAP()

Figure 4: Pseudocode for the mapping algorithm.

6 Experimental Results

The WIMIN algorithm was run on twelve test net-
works. The technology parameters used are those pre-
sented in [1, 2].

The algorithm is implemented in C on a DECsta-
tion 5000/133. Experimental results for Problem P1,
in which the wire sizes that correspond to the mini-
mum interconnect delay are found for each of the test
circuits, are shown in Table 1. The value of the mul-
tiplicative factor, F , is set to 1.2 here.

During our experiments, an additive factor was
tried instead of a multiplicative factor; however, this
was found to give poorer results. This may be at-
tributed to the fact that wires near the source need to
be sized more than those near the leaf nodes, and the
general pro�le of the correctly sized wires resembles a
geometric, rather than an arithmetic progression.

For each circuit, we show the cost and delay of the
unsized circuit, i.e., the circuit in which all wires have
unit width. As mentioned earlier, the cost is taken as
the sum of wire sizes. The next two three-column sets
show the cost, RC delay, and the execution time for
the optimization, when the maximum allowable wire
size is 2 and 6, respectively. Note that the computa-
tion time of the algorithm is very reasonable. With
some increase in wire sizes, it can be seen that the
interconnect delay can be improved signi�cantly.

The bulk of the CPU time is incurred by the con-
tinuous optimization problem, and only a small frac-
tion (under 10%) is attributable to the mapping phase.
The run times are reasonable even for large circuits.

In the last two columns of Table 1, for the case
when the maximum allowable wire size is 6, the delay
constraint is relaxed to 15% over the minimum delay,
and problem P2 is solved. We apply a uniform timing
constraint on each leaf node of the tree. Note that
the nature of the algorithm is such that there may be
di�erent delay speci�cations at each of the leaf nodes
for Problem P2, and not a uniform speci�cation. For
no reason in particular, however, we restrict ourselves
to a uniform timing constraint for all leaf nodes in this
section. It must be stressed, however, that the algo-
rithm is general enough to handle nonuniform timing
constraints too. The corresponding cost and run times

are shown. The �gures in brackets under the \Cost"
column represent the % cost reduction compared to
the minimum delay case. Improvements of as much
as 46% are seen; note that the actual improvement in
chip area may be even better, since our cost function
is a very simple measure of routing expense.

Next, we present results on Problem P2, i.e.,
on minimizing interconnect delay under timing con-
straints, graphically on two speci�c circuits in Fig-
ure 5. This picture serves to illustrate the area-delay
tradeo� made during wire sizing. As before, the value
of the factor F in Algorithm 3 is set to 1.2.

The results plotted in Figure 5 show the true util-
ity of using the problem formulation P2. It is ob-
served that the interconnect area overhead required
to achieve the minimum possible delay is extremely
high, for the last fraction of delay reduction. While
some of this is attributable to suboptimality of the
sensitivity-based algorithm, the same characteristics
were found to hold when the factor F was very close
to 1, when the solution is close to optimal. This ex-
plains why, in Table 1, substantial improvements in
the cost functions are achieved when the constraints
are relaxed by a small amount.

It was found that the delay corresponding to the
mapped discrete solution is always within about 10%
of the continuous solution, thereby providing us with
an upper bound on the deviation of the solution from
the optimum. The larger errors are in the cases where
the amount of sizing is relatively small and it is possi-
ble that in these cases, a large portion of the di�erence
between the continuous and discrete solutions is due
to discretization noise. If the factor F = 1 + �, then
the quality of the continuous solution can be enhanced
by making � smaller.

The continuous sizing solution is, by the construc-
tion of the algorithm, less than the speci�cation. How-
ever, the discrete solution delay is not always so, and
may provide a solution that has slightly larger delay
than the speci�cation. This is not critical, since the
Elmore delay model is known to be accurate only up to
10 or 20 %, whereas the discrepancy between the dis-
crete solution delay and the speci�cation is less, and
some is attributable to discretization noise.

In the experiments above, it was assumed here that
each wire segment is sized at a time. Experiments
were also conducted where individual grid segments
were sized (a grid segment corresponds to a single
RC segment from Figure 1), so that the width of a
wire segment is not uniform along its entire length. In
such a case, it was found (as expected) that greater
amounts of delay reduction were possible [4]. It was
also seen that the di�erence between the continuous
solution and the mapped solution was within 5% for
all tested cases; this reduction in the gap occurs be-
cause the discretization noise for this case is smaller.

The drawbacks of sizing a grid segment at a time
instead of a wire segment at a time are twofold: �rstly,
the run times are much larger (about an hour for
Intct12, which has 999 segments), and secondly and
more seriously, the nonuniform wire sizes could have
serious repercussions on the routability of the layout.
Nevertheless, this serves to illustrate the fact that the
proposed algorithm can easily be generalized to handle
this case, and any intermediate sizing strategies.



Table 1: Results of Minimizing Interconnect Delay.
Maxsize =2 Maxsize = 6

Circuit Unsized Minimum delay Minimum delay Dspec = 1:15�Dmin

Cost Delay (ns) Cost Delay CPU Cost Delay CPU Cost CPU

Intct1 1.622 118 1.161 1.1s 161 0.931 2.3s 128 (26%) 0.9s
Intct2 2.526 128 1.652 0.8s 189 1.182 1.3s 143 (32%) 0.6s
Intct3 99 2.710 120 1.787 0.8s 182 1.186 1.7s 144 (26%) 0.5s
Intct4 1.759 120 1.288 1.2s 180 1.087 2.4s 123 (46%) 0.9s
Intct5 2.231 115 1.650 0.4s 223 1.214 0.6s 163 (37%) 0.4s
Intct6 0.872 551 0.715 5.0s 672 0.633 13.1s 527 (28%) 1.4s
Intct7 499 1.002 565 0.774 5.2s 739 0.664 12.0s 552 (34%) 2.1s
Intct8 1.297 609 0.935 6.0s 864 0.740 13.1s 643 (35%) 3.1s
Intct9 1.236 700 0.865 4.0s 1072 0.689 4.8s 732 (46%) 3.1s
Intct10 1.540 1108 1.132 11.1s 1376 0.903 29.2s 1168 (18%) 5.8s
Intct11 999 2.387 1226 1.601 15.9s 1712 1.123 34.1s 1385 (24%) 7.4s
Intct12 3.102 1178 2.012 14.7s 2033 1.369 27.4s 1529 (33%) 7.4s

7 Conclusion

A new algorithm for interconnect sizing has been
described in this paper. The WSP is solved under an
Elmore delay model that does not require the critical
leaf nodes to be speci�ed. The problem of obtain-
ing the optimal wire sizes under delay constraints is
addressed for the �rst time and area-delay tradeo�
curves are shown. Further, it is shown experimentally
that achieving the absolute minimum delay for a net
involves a wasteful use of resources; instead, a delay
target of even 10-15% over the minimum delay pro-
vides a good engineering solution.
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