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Abstract
We present an efficient statistical timing analysis algorithm that
predicts the probability distribution of the circuit delay while in-
corporating the effects of spatial correlations of intra-die parame-
ter variations, using a method based on principal component anal-
ysis. The method uses a PERT-like circuit graph traversal, and has
a run-time that is linear in the number of gates and interconnects,
as well as the number of grid partitions used to model spatial cor-
relations. On average, the mean and standard deviation values
computed by our method have errors of ��� ��� and ��� 	
� , respec-
tively, in comparison with a Monte Carlo simulation.

1. INTRODUCTION

Device and interconnect parameters in new technology generations
show a significant amount of variability due to process variations,
and the prediction of circuit performance is becoming a challeng-
ing task. Conventional static timing analysis (STA) handles vari-
ability by analyzing a circuit at multiple process corners, and it is
generally accepted that such an approach is inadequate. An alter-
native approach that overcomes these problems is statistical STA,
which treats delays not as fixed numbers, but as probability density
functions (PDFs), taking the statistical distribution of parametric
variations into consideration while analyzing the circuit.

Process variations can be classified as follows: inter-die vari-
ations are the variations from die to die, while intra-die variations
correspond to variability within a single chip. Inter-die variations
affect all the devices on the same chip similarly, while intra-die
variations affect different devices differently on the same chip. It
used to be the case that the inter-die variations dominated intra-
die variations, so that the latter could be safely neglected. How-
ever, in modern technologies, intra-die variations are rapidly and
steadily growing and their effects significantly affect the variabil-
ity of performance parameters on a chip. A number of publications
on statistical timing analysis have focused on circuit performance
prediction considering intra-die variation [1–4]. However, most
prior work has ignored intra-chip spatial correlations by simply
assuming zero correlations among devices on the chip. The diffi-
culty in considering spatial correlations between parameters is that
it always results in complicated path correlation structures that are
hard to deal with. The authors of [5] consider correlation between
delays among the transistors inside a single gate, but not correla-
tions between gates. The work in [6] uses a Monte Carlo sampling-
based framework to analyze circuit timing on a set of selected sen-
sitizable true paths. Another method in [7] computes path corre-
lations on the basis of pair-wise gate delay covariances and used
analytic method to derive lower and upper bounds of circuit delay.
The statistical timing analyzer in [8] takes into account capacitive
coupling and intra-die process variation to estimate the worst case
delay of critical path. The approach in [9] proposes a model for
spatial correlation and a method of statistical timing analysis to
compute the delay distribution of a specific critical path. However,
the PDF for a critical path may not be a good predictor of the dis-
tribution of the circuit delay (which is the maximum of all path
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delays), as explained in Section 2. Moreover, any strictly path-
based method will eventually be faced with an explosion in the
number of critical paths.

We propose an algorithm for statistical STA that computes the
distribution of circuit delay while considering correlations due to
path reconvergence as well as spatial correlations. We model the
circuit delay as a correlated multivariate normal distribution, con-
sidering both gate and wire delay variations. The complexity of
the algorithm is ���������������������� , which is linear in the number
of gates � � and interconnects � � , and also linear in the number
of grids � that are used to model the variational regions. In other
words, the cost is, at worst, � times the cost of a deterministic STA.

2. PROBLEM FORMULATION

Under process variations, parameter values such as the transistor
gate length, width, the metal line width and the metal line height
are random variables. Some of these variations are determinis-
tic, while others are random: this work will focus on the effects
of random variations, and will model these parameters as random
variables. The gate and interconnect delays, as functions of these
parameters, also become random variables. The task of statistical
STA is to find the PDF of the circuit delay under these variations.

Since we will employ a PERT-like traversal to analyze the dis-
tribution of circuit delay, we will work on the statistical timing
graph of a circuit. This is similar to the timing graph for determin-
istic STA, but each node (gate delay) or edge (interconnect delay)
is weighted by a random variable instead of a deterministic delay,
and these random variables may be uncorrelated or correlated.

Definition 2.1 The problem of statistical STA for a circuit is that
of finding the probability distribution of �! �"#��$&%(')�*�)�('+$-,/.)02143(5
� ,
where $-6 is the path delay distribution of a path from the source
node to the sink node in the statistical timing graph of the circuit.

For the same nominal design, the identity of the longest path may
change, depending on the random values taken by the process pa-
rameters. Therefore, finding the delay distribution of one critical
path at a time is not enough, and correlations between paths due
to structural correlations (reconvergent fanouts) and spatial corre-
lations must be considered in finding the PDF of the maximum of
all path delays. Such an analysis is essential for finding the proba-
bility of failure of a circuit, which is available from the cumulative
density function (CDF) of the circuit delay.

In our work, we model all process parameter values as nor-
mally distributed random variables, and justify the modeling of
node and edge weights as normally distributed random variables
that are functions of process parameters. Since we consider spa-
tial correlations of parameters, some of the random variables are
correlated. Furthermore, we model the circuit delay as a multivari-
ate normal distribution as well, and show that the loss of accuracy
under this approximation is not significant.

3. MODELING PARAMETER VARIATIONS

3.1. Components of Variations

We will focus on intra-die variations; however, the method can be
easily extended to include inter-die variations. We model the pa-



rameter variations as location-dependent normally distributed ran-
dom variables as follows [10]:� � �� �������*" �	��
����� ��� ��'�� � (1)

where �� is the nominal design parameter value, ��"�'�� � is its die
location, ��� and ��
 are the location-dependent gradient of parame-
ter, and � � ��'�� � is the random component which is a multivariate
normal distribution, where � is the covariance matrix.

In this work, for transistors, we consider the following geome-
try parameters as random variables: transistor length � � and width� � , gate oxide thickness ��� � , doping concentration density ��� ;
for interconnect, at each metal layer, we consider the following
parameters: metal width

� 6 ,���� , metal thickness � 6 ,���� and ILD
thickness � ��� �!� , where the subscript " represents that the random
variable is of layer " , where " �$# �)�)� �&% � 
')(+* . We believe that
this framework is general enough that it can be applied to handle
variations in other parameters as well.

3.2. Spatial Correlations

To model the intra-die spatial correlations of parameters, we par-
tition the die into �-,/.10 � �-2�.�" � � grids. Since devices [wires]
close to each other are more likely to have more similar charac-
teristics than those placed far away, we assume perfect correla-
tions among the devices [wires] in the same grid, high correlations
among those in nearby grids and low or zero correlations in far-
away grids. For example, in Figure 1: gates  and 3 (whose sizes
are shown to be exaggeratedly large) are located in the same grid
square, and it is assumed that their parameter variations (such as
the variations of their transistor gate length), are always identical.
Gates  and 2 lie in neighboring grids, and their parameter vari-
ations are not identical but highly correlated due to their spatial
proximity. On the other hand, gates  and 4 are far away from
each other, their parameters are uncorrelated.

Under this model, a parameter variation in a single grid at loca-
tion ��"�'5� � can be modeled using a single random variable � ��"�'�� � .
For each type of parameter, � random variables are needed, each
representing the value of a parameter in one of the � grids. In ad-
dition, we assume that correlation exists only among the same type
of parameters and there is no correlation between different types
of parameters. For example, the � � values for transistors in a grid
are correlated with those in nearby grids, but are uncorrelated with
other parameters such as � � � or

� 6 ,�� � in any grid. (Note here
that we consider interconnect parameters in different layers to be
“different types of parameters,” e.g.,

� 6 ,��76 and
� 6 ,1�98 are uncor-

related.) For each type of parameter, a (sparse) correlation matrix
of size � � � represents the spatial correlations of such a structure.
In this work, we use the correlation matrix derived from the spatial
correlation model used in [9].

4. STATISTICAL TIMING ANALYSIS ALGORITHM

4.1. Modeling Gate/Interconnect Delay PDFs

In this section, we will show how the variations in the process pa-
rameters are translated into probability density functions (PDFs)
that describe the variations in the gate and interconnect delays that
correspond to the weights on the nodes and edges, respectively, of
the statistical timing graph. We will use first-order Taylor expan-
sions to approximate the distributions of the gate or interconnect
delays.

In this work, we use the Elmore delay model for simplicity
to calculate the interconnect delays1. The interconnect delay can
be expressed as a function of the process parameters of the inter-
connect and the receivers, such as

� 6 ,��9� , � 6 ,1��� , � ���:� � , � � , � �
and � � � . Recall that under our model, we divide the chip area into
grids so that the parameter variations within a grid are identical,

1However, it should be emphasized that any delay model may be used,
and all that is needed is the sensitivity of the delay to the process parame-
ters, say, through a full circuit simulation and adjoint network analysis.
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Figure 1: Grid model for spatial correlations

but those in different grids exhibit spatial correlations. Now con-
sider an interconnect tree with several different segments that re-
side in different grids. The delay variations in the tree are affected
by the parameter variations of wires in all grids that the tree tra-
verses. For example, in Figure 1, consider the the interconnect tree
driven by gate  which passes through grid � # ' # � and grid � # '+� � ,
the distribution of the tree delay is actually a function of random
variables of interconnect parameters in both grids and should in-
corporate any correlations between these random variables. Simi-
larly, if the gates that the interconnect tree drives reside in different
grid locations, the interconnect delay to any sink is also a function
of random variables of gate parameters of all grids in which the
receivers are located. Using a first order Taylor expansion, the dis-
tribution of interconnect delay can be approximated as a normal
distribution by:;5<>= 1@? ;5A<>= 1 B C<�DFE/G HJI ;IK < GML AON K < G B C<�DFE/G HPI ;I�Q <G L AON Q <G (2)

B C<�DFE G H I ;IR <S)T L A N R <S)T B = � 0+U�VXWC � ? 6
Y C<7DFE <>= 1JZ I ;IQ <<[= 1 �]\ A N Q <<>= 1 �B C<�DFE <[= 1 Z I ;IR <<[= 1 �]\ A N R <<>= 1 � B C<7DFE <[= 1 Z I ;I^ <_ KM` � \ A N ^ <_ KM` �]a

where 4Fb6 ,1� is the interconnect delay value calculated with nomi-
nal values of parameters. c � is the set of indices of grids that all
the receivers reside in. c�6 ,1� is the set of indices of grids that the
interconnect tree traverses. de� 6� � � 6�gfeh � < G where � 6� is the ran-

dom variable representing transistor length in the iXj�k grid. d � 6� ,dl� 6� � , d � 66 ,1� � , dl� 66 ,�� � and dP� 6��� � � are similarly defined. The
subscript “ b ” next to each sensitivity represents the fact that it is
evaluated at the nominal value of the delay.

The gate delay can be similarly approximated as a function of
parameters such as � � ,

� � , ��� � and ��� of the gate and its re-
ceivers, and

� 6 ,1� � , � 6 ,�� � , �-��� �!� of the interconnect that it drives.

4.2. Orthogonal Transformation of Correlated Variables

Correlation due to reconvergent paths is known to be a problem
for statistical timing analysis, even when spatial correlations are
ignored. When these relationships among process parameters are
taken into consideration, the correlation structure becomes even
more complicated. To make the problem tractable, we use the Prin-
cipal Component Analysis (PCA) technique [11] to transform the
set of correlated parameters into an uncorrelated set.

Given a set of correlated random variables mn with a covari-
ance matrix o , the PCA technique transforms the set into a set of
mutually orthogonal random variables, mnqp

, such that each member
of mn p

has zero mean and unit variance. The set mn p
is called the set

of principal components and its size is no larger than the size of mn .



Any variable " 6�� mn can then be expressed as a linear function of
the principal components in mn p

:

" 6 � � C � � � 6g���
6 � �*" p� ��� 6 � h 6 (3)

where " p� � mn p
,
� 6 is the i7j�k eigenvalue of the covariance matrixo , ��6 � is the i7j�k element of the 	 j9k eigenvector of o , and � 6 andh 6 are, respectively, the mean and standard deviation of " 6 .

For instance, let m� � be the set of random variables represent-
ing transistor gate length variations in all grids and the set of ran-
dom variables is of multivariate normal distribution with covari-
ance matrix o � G . Let m� p � be the set of principal components

computed by PCA. Then any � 6� � m� � representing the variation
of transistor gate length of the i j9k grid can then be expressed as a
linear function of the principal components:� 6� � h � < G �  �6�% � "�
 %� � ���/�  �6[� � "�
 �� (4)

where h � < G is the mean of � 6� , " 
 6� is a principal component in m� p� ,

all " 
 6� are independent with zero means and unit variances, and  is
the total number of principal components in m� p � .

In this way, any random variable in m� � , m� � � , m� � , m� 6 ,�� � , m� 6 ,�� �
and m� ��� � � can be expressed as a linear function of their corre-
sponding principal component set m� p� , m� p� � , m� p� , m� p6 ,��9� , m� p6 ,1��� andm� p��� � � . Superposing the set of rotated random variables of pa-
rameters on the random variables in gate or interconnect delay as
in equation (2), the expression of gate or interconnect delay is then
changed to the linear combination of principal components of all
parameters: 4 � 4 b ��� % � � p % � � ���/����� � � p � (5)

where � p 6 � m��p and m��p � m� p��� m� p��� m� p� ��� m� p� � m� p6 ,���� � m� p6 ,���� �m� p��� �!� and � is the size of m� p . Equation (5) has the following
properties:

Property 1 Since all � p 6 are orthogonal, the variance of 4 can be
simply computed as � �6��#% ���6 .

Property 2 The covariance between 4 and any principal compo-
nent � p 6 is given by: 2�.�� ��4 ' � p 6 � � � 6�� �� 
< � � 6 , i.e., the

coefficient of � p 6 is exactly the covariance between 4 and � p 6 .
Property 3 Let 4 6 and 4 � be two random variables:4 6 � 4 b6 ��� 6�% � � p % � ������� 6 � � � p � (6)4 � � 4 b� ��� � % � � p % � � ���/��� � � � � p � (7)

The covariance of 4 6 and 4 � , 2�.�� ��4 6 '54 � � , can be computed
by � �( �#% � 6 ( � � ( .

4.3. PERT-like Traversal of Statistical STA

Using the techniques discussed up to this point, all nodes and
edges of the statistical timing graph may be modeled as normally
distributed random variables. In this section, we will describe a
procedure for finding the distribution of the statistical longest path
in the graph.

In conventional deterministic STA, the PERT algorithm can be
used to find the longest path in a graph by traversing it in topolog-
ical order using two types of functions: the sum function, and the
max function. To apply the PERT algorithm in our statistical tim-
ing analysis, we must find the probability distributions of the sum
and max functions of a set of correlated Gaussian random vari-
ables:

1) 4F*���� � � ,6��#% 4 6 , and
2) 4 � � � � �� �"#��4 % '���)')4 , � ,
where 4�6 is a random variable representing either gate delay or
wire delay expressed in the form as equation (6).

Computing the distribution of the sum function

The computation of the distribution of sum function is simple.
Since 4 *���� is a linear combination of normally distributed random
variables, 4 *���� is a normal distribution with the mean h"! *���� �
� ,6#�#% 4 b6 and variance � �! *���� � � �� � % � ,6#� % � �6 � .

Computing the distribution of the max function

The max function of � normally distributed random variables, 4 � � � ,
is, strictly speaking, not Gaussian. However, we have found that
it can be approximated closely by a Gaussian. This idea is similar
in spirit to Berkelaar’s approach in [1], although it is more gen-
eral since Berkelaar’s work restricted its attention to delay random
variables that were uncorrelated. In this work, we approximate4 � � �%$ ��� h&!(' 0 T ')� �!(' 0 T � as a linear function of all the princi-
pal components � p % ��� � p � :4 � � � � h&!(' 0 T �  % � p % � ����/�  � � p � (8)

From Property 2 of Section 4.2, we know that the coefficient  ( equals 2�.�� ��4 � � � ' � (/� . Then the variance of the expression on
the right hand side of equation (8) is computed as *��b � � �( �#%  ��( �� �( �#% 2�.��+�
��4 � � ��' � (�� . Since this is merely an approximation,
there may be a difference between the value * �b and the actual vari-
ance � �!�' 0 T of 4 � � � . To diminish the difference, we normalize
the value of   ( by 2 .�� ��4 � � � ' � (*� �-, ; ' 0 T* A .

We can see now that to find the linear approximation for 4 � � � ,
we need to compute h"! ' 0 T , � ! ' 0 T and 2�.�� ��4 � � � ' � 6 � . If . and/ are two random variables, . $ � h % ')� % � , / $ � h � ')� � � , with
a correlation coefficient of , ��.�' / � �10 , then the mean h � and
the variance � �� of  �325476 ��. ' / � can be approximated using the
closed-form formula provided in [12]. Moreover, if 8 is another
normally distributed random variable and , ��.�'98 � �:0 % , , � / '�8 � �0 � , then the correlation between 8 and  can also be obtained.
Example Let us consider the evaluation of 4 � � � for a two-variable
max function, 4 � � � � �� �"#��4 6 '54 � � , using the results from [12]
and the properties introduced in Section 4.2. The procedure is as
follows:

1. Compute the means and standard deviations of ; 6 and ; � : < ! 6 ,= ! < and < !?> , = !?> , respectively as described in Property 1 of Sec-
tion 4.2.

2. Find @�A�; 6CB ; ��D , the correlation coefficient between ; 6 and ; � byECF�G A�; 6?B ; ��D =IH %! < =&H %! > , where E?F(G A�; 6CB ; �JD , the covariance of ; 6
and ; � , can be computed using Property 3 in Section 4.2. Now
if @JA�; 6)B ; ��DLKNM and = ! < K = !?> , set ; � � � to be identical to; 6 or ; � , whichever has larger mean value and we can stop here;
otherwise, we will continue to the next step.

3. Calculate the mean < ! ' 0 T and variance = �!�' 0 T of ; � � � using
the results from reference [12].

4. Find all coefficients O�( of P p ( . According to Property 2, O1( KECF�G A�; � � � B P p ( D , also, ECF�G A�; 6?B P p ( DQKSR 6 ( and E?F(G A�; � B P p ( DQKR�� ( . Applying the results from [12], the values of ECF�G A�;�� � � B P p ( D
and thus O1( can be calculated.

5. After all of the O1( ’s have been calculated, determine T b K� � �( �#% O/( � . Reset each coefficient O1( K O/( , ; ' 0 T* A .

The calculation of the two-variable max function can easily be
extended for an � -variable max function by repeating the steps of
the two-variable case recursively. During the computation of � -
variable max function, some inaccuracy could be introduced since



we approximate the max function as normal even though it is not
really normal, and proceed with further recursive calculations. We
will show in Section 6 that such inaccuracies are not significant
and the results match very well with the simulation results from a
Monte Carlo analysis.

At this point, not only the nodes and edges, but also the re-
sults of sum and max functions are expressed as linear functions of
the principal components, and thus all path delays in the statisti-
cal timing graph also become the linear functions of the principal
components. Therefore, we can find the distribution of statistical
longest path using a PERT traversal, incorporating the computa-
tion of sum and max functions described above. To further speed
up the process, several techniques may be used:

1. Before we run the statistical timing analyzer, we perform
one run of deterministic timing analysis to determine a loose
bound on the best-case and worst-case delays for all paths.
Any path whose worst-case delay is less than the best-case
delay of the longest path will never be critical, we can safely
remove the edges that lie only on such paths.

2. During the max operation of statistical STA, if the value of���* �� � � � � of one path has a lower delay than the value
of ���* �� f � ��� of another path, we can simply calculate
the max function ignoring the former path.

5. COMPUTATIONAL COMPLEXITY

We present a run time complexity analysis here to show which
factors most greatly affect the CPU time of the algorithm. The
PCA step requires computation of eigenvectors and eigenvalues of
the covariance matrix. Its time complexity is �� � ������� , where �
is total number of grids divided and � is the number of parameters
considered. Since the PCA step is to be performed just once for
each process, we do not consider it here; in our experiments, it
was performed in Matlab in less than 1 second. The run time of
the algorithm can be divided into:

1. The time required to find the delay distribution of the gate
and interconnect: This run time depends on how many dif-
ferent grids the interconnect passes through and how many
grids the gates are located in, and in general these numbers
are bounded by constant numbers. The run time is also pro-
portional to the total number of principal components, since
we perform orthogonal transformation at each wire segment
of interconnect. For each random variable, the number of
principal components is no more than the total number of
grids � partitioned on the chip. Thus, the time required to
find the distribution of a single gate or wire can be esti-
mated as ������ . If � � is the total number of gates and � �
the number of net connections in the circuit, the time of this
part can be estimated as ���� � ����� � ������� .

2. The time required to evaluate the max function: The cost
of this operation is proportional to the number of random
variables involved in the max operation and the number of
principal components of each random variable. The max
operation is used at all multi-input gates and at the last level
(sink node) where the maximum circuit delay is computed.
This number can be upper bounded by the total number of
net connections ��� in the circuit. Thus, the run time of this
part is ���� �*� � � .

3. The time required to evaluate the sum function: The sum
operation must be performed at all gates and interconnects
encountered during the PERT-like traversal. A single sum
operation requires ������ , and therefore, the total complexity
for this part is ���� � ��� � � � � ��� .

Therefore, the run time complexity of the algorithm is ����J� ��� � �
������� , which is � times that of deterministic STA.

Table 1: Parameters used in the experiments
Parameters � � �� � � � � � ( 	 6 A 6�
� '���� ) � 6 ,�� � 6 ,1� � ��� �

( ��� )( ��� ) ( ��� ) ��� F T���P�� F T ( ��� )( ��� ) ( ��� )
Mean 180 270 4.1 2.3549/4.1589 180 320 70

Deviation (%) 25% 20% 10% 10% 25% 20% 35%

6. EXPERIMENTAL RESULTS

The proposed algorithm was implemented in C++ as the software
package “MinnSSTA”, and tested on the edge-triggered ISCAS89
benchmark circuits. All experiments were run on a Linux PC with
a � � ������� CPU and ������ "! memory. As in [7,9], we use #$# ��� �
technology parameter and 2-metal layer interconnect model. The
process parameters and their max percentages of deviations from
the nominal values (Table 1) used here are based on predictions
from [13, 14]. In the experiments, the parameter variations are set
up so that spatial and random components each accounts for half
of the deviations from the nominal value. Since the computation
requires physical information about the locations of the gates and
interconnects, all cells in the circuit were first placed using the
placement tool, Capo [15]. Global routing was then performed to
route all the nets in the circuits. Depending on the size of circuit,
we divided the chip area into different sizes of grids, so that each
grid contains % # �
� cells.

To verify the results of our method MinnSSTA, we used Monte
Carlo (MC) simulation for comparison. To balance the accuracy
and run time, we chose to run 10,000 iterations for the Monte
Carlo simulation. A comparison of these results with those from
MinnSSTA is shown in Table 2. For each test case, the mean and
standard deviation (SD) values for both methods are listed. The re-
sults of MinnSSTA can be seen to be very close to the MC results:
the average error is ��� ��� for the mean value and ��� 	
� for the
standard deviation. In Figure 2, for the largest test case * � #'&:#)( ,
we show the plots of the PDF and CDF of the circuit delay for both
MinnSSTA and MC methods. It is observed that the curves almost
perfectly match each other. In Table 2, we also provide the CPU
times for both methods. To show the PCA steps require very little
run time, the run time for this part is also listed. We can see that
the CPU time of MinnSSTA on all test cases is very fast. The cir-
cuit with the longest run time, * � ��	 � � , was analyzed in only 182
seconds, while the MC simulation required over 13 hours.

To show the importance of considering spatial correlations, we
consider the difference between performing statistical timing anal-
ysis while considering spatial correlation and while ignoring it.
Since this is a comparison to determine why spatial correlations
are important, the CPU time is not a consideration. Therefore,
we run another set of Monte Carlo simulations (MCNoCorr) on
the same set of benchmarks, this time assuming zero correlations
among the devices and wires on the chip. The comparison between
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Figure 2: Comparison of MinnSSTA and MC methods. MinnSSTA:
solid-line curve. MC: starred-line curve



Table 2: Comparison results of the proposed method and Monte-Carlo simulation method
Benchmark Monte-Carlo simulation (MC) MinnSSTA � �

<>=/=���� R�� � ���
	��� �
Name #Cells #Grids Mean(ps) SD(ps) CPU-time(s) Mean(ps) SD(ps) CPU-time(s) PCA-time(s) Mean SD

s38417 23815 256 4285.6 192.7 15295 4281.7 191.4 130.32 0.15 -0.1% -0.7%
s38584 20705 256 7678.7 271.3 19024 7668.4 268.8 132.08 0.15 -0.1% -0.9%
s35932 17793 256 5655.9 228.6 48087 5641.1 220.3 182.31 0.15 -0.3% -3.6%
s15850 10369 256 6441.0 248.1 9932 6430.6 247.2 56.00 0.15 -0.2% -0.3%
s13207 8260 256 5258.5 206.4 5082 5254.4 208.0 50.48 0.15 -0.1% 0.8%
s9234 5825 64 2870.4 112.5 2952 2868.7 112.9 9.42 0.02 -0.1% 0.4%
s5378 2958 64 2369.0 83.7 1531 2362.8 83.2 5.27 0.02 -0.3% -0.5%
s1196 547 16 2326.8 94.2 378 2320.9 93.9 0.41 0.01 -0.3% -0.3%
s27 13 4 944.2 46.9 67 943.3 46.8 0.00 0.00 -0.1% -0.3%

Table 3: Comparison of timing analysis with and without spatial correlations
Benchmark Anal. w/ corr. (MC) Anal. w/o corr. (MCNoCorr) � ��� � ���� S � S W)W 	���
 S � S W)W � Multi-Process-Corner (MPC) � ����� � ���
	��� �

Name Mean(ps) SD(ps) Mean(ps) SD(ps) Mean SD Mean(ps) SD(ps) Mean SD
s38417 4285.6 192.7 4285.8 100.5 0.0% 91.7% 4324.4 428.7 0.9% 122.5%
s38584 7678.7 271.3 7660.4 178.8 0.2% 51.7% 7683.0 764.6 0.1% 181.8%
s35932 5655.9 228.6 5670.8 188.8 -0.3% 21.1% 5591.5 465.6 -1.1% 103.6%
s15850 6441.0 248.1 6445.2 78.3 -0.1% 216.8% 6508.5 625.7 1.0% 152.2%
s13207 5258.5 206.4 5264.7 73.5 -0.1% 180.9% 5293.9 526.2 0.7% 154.9%
s9234 2870.4 112.5 2881.8 41.7 -0.4% 169.6% 2881.9 280.5 0.4% 149.3%
s5378 2369.0 83.7 2371.2 33.3 -0.1% 151.3% 2349.5 232.9 -0.8% 178.3%
s1196 2326.8 94.2 2340.2 40.8 -0.6% 130.6% 2340.9 225.3 0.6% 139.3%
s27 944.2 46.9 945.2 36.7 -0.1% 27.8% 951.6 95.2 0.8% 102.8%

the data is shown in Table 3. It can be observed that although
the mean values are close, the variances of the uncorrelated cases
(MCNoCorr) are much smaller than the correlated cases (MC). On
average, the standard deviation of the correlated case increases by#1# ��� ( � . Again, we plot the PDF and CDF curves of both simu-
lations for circuit * � #�& # ( in Figure 3. It is seen that the CDF and
PDF curves of MCNoCorr deviate significantly from those of MC
In other words, statistical timing analysis without considering cor-
relation may incorrectly predict the real performance of the circuit
and could even overestimate the performance of the circuit. This
underlines the importance of developing efficient statistical STA
methods that can incorporate spatial correlations.

As an alternative, we consider the option of using multiple
process corners (MPC) for these experiments, and these results are
also displayed in Table 3. On average, such an approach overes-
timates the standard deviation by 142.8%. These results also em-
phasize the importance of considering spatial correlations during
statistical STA, as is done by our algorithm.
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