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Abstract
This paper examines the problem of minimizing the area
of a synchronous sequential circuit for a given clock pe-
riod speci�cation under the standard-cell paradigm. This
is e�ected by appropriately selecting a size for each gate in
the circuit from a standard-cell library, and by adjusting
the delays between the central clock distribution node and
individual ip-ops. Traditional methods treat these two
problems separately, which may lead to very sub-optimal
solutions in some cases. Experimental results show that by
considering the two problems together, it is not only possi-
ble to reduce the optimized circuit area, but also to achieve
faster clocking frequencies. We also address the problem
of making this work applicable to very large synchronous
sequential circuits by partitioning these circuits to reduce
the computational complexity.

1 Introduction

The well-known sizing problem attempts to resolve the
conicting requirements of decreasing both the circuit area
and the circuit delay. It is most often formulated as follows:

minimize Area

subject to Delay � Pspec: (1)
The discrete sizing problem [1{4], allows only a lim-

ited number of choices for each gate. These correspond to
the gate con�gurations available in a standard cell library.
This problem has been shown to be NP-complete [1].

The actual synchronous sequential circuit optimization
problem is more complex than the simple sizing scenario.
An additional degree of freedom is available to the de-
signer in that one can set the time at which clock signals
arrive at various ip-ops (FF's) in the circuit by con-
trolling interconnect delays in the clock signal distribution
network. With such adjustments, it is possible to change
the delay speci�cations for the combinational stages of a
synchronous sequential circuit to allow for better sizing.

In this paper, we examine the problem of minimizing
the area of a synchronous sequential circuit, given a clock
period speci�cation, by appropriately selecting gate size for
each gate in the circuit from a standard-cell library, and by
adjusting the delays between the central clock and individ-
ual FF's. For simplicity, the analysis will use positive-edge-
triggered D-ip-ops. In this paper, the words ip-op
(FF) and latch will be used interchangeably. We assume
that all primary inputs (PI) and primary-outputs (PO) are
connected to FF's outside the system, and are clocked with
zero (or constant) skew.

2 Problem Formulation

2.1 Formulation of Constraints

Under the Elmore delay assumption, the delay of a gate
can be represented by a piecewise linear function of its own
size and that of its fanout gates. Due to limitations of
space, we skip the details and refer the reader to [5].
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In general, given a combinational circuit segment that
lies between two FF's i and j, if si and sj are the clock ar-
rival times at the two FF's, we have the following relations:

si +Mindelay(i; j) � sj + Thold (2)

si + Tsetup +Maxdelay(i; j) � sj + Pspec (3)

whereMaxdelay(i; j) andMindelay(i; j) are, respectively,
the maximum and the minimum combinational delays be-
tween the two FF's, Thold and Tsetup are, respectively, the
set-up time and hold time of the FF, and Pspec is the clock
period. Fishburn [6] studied the clock skew problem, un-
der the assumption that the delays of the combinational
segments are �xed, and formulated the problem of �nding
the optimal clock period and the optimal skews as a linear
program. The objective was to minimize Pspec, with the
constraints given by the inequalities in (2) and (3). In real
design situations, however, Pspec is dictated by system re-
quirements, and the real problem is to reduce circuit area.

2.2 Formulation of Linear Program

The delay speci�cation requires that all path delays
must be bounded by Pspec. To reduce the number of con-
straints, we introduce additional variables, mi, i = 1 � � �
N (where N is the number of gates), corresponding to the
longest-path delay from the primary inputs to each gate.
For the shortest-path delay, we introduce pi, i = 1 � � � N ,
corresponding to the shortest delay from PI's up to the
output of Gi. Using these variables, we have

mj + di � mi; 8 j 2 Fanin(i): (4)

pj + di � pi; 8 j 2 Fanin(i): (5)

where di is the delay of gate i.
Our problem requires us to represent path delay con-

straints between every pair of PI's and PO's of a combina-
tional subcircuit [6]. (Notice that, in a combinational sub-
circuit, the inputs of FF's are considered as pseudo PO's
and the outputs of FF's are considered as pseudo PI's.) To
represent path delays, we need intermediate variables mi

k

(pik) to represent the longest (shortest) delay from the ith
PI to the kth gate. We now formulate the linear program
for a general synchronous sequential circuit as follows. The
value of si is set to a constant (such as 0) if latch i is a PI
latch or a PO latch.

minimize
PN

k=1 k � xk
subject to

dk � D̂(xk; xk;1; : : : xk;fo(k)); 1 � k � N
Minsize(k) � xk �Maxsize(k); 1 � k � N
For all FF i; 1 � i � L
si + pifanin(j) � sj + Thold 1 � j � L;
si + Tsetup +mi

fanin(j) � sj + Pspec 1 � j � L;
For all gates k = 1; � � � ;N
mi

l + dk �mi
k; 8 l 2 Fanin(k)

pil + dk � pik; 8 l 2 Fanin(k)
(6)

where k is the area coe�cient (a constant). The area of
gate k is k � xk if gate k has size xk. xk;1; : : : xk;fo(k) are



the sizes of the gates to which gate k fans out, and D̂(�)
is a piecewise linear delay function. The above is a linear
program in the variables xi; di;mi; pi and si.

2.3 Symbolic Propagation of Constraints
For large circuits, the number of LP constraints could

be tremendous. In this section, we propose a symbolic
propagation method to prune the number of constraints
by a judicious choice of the intermediate variables m and
p, without sacri�cing accuracy.

The combinational subcircuit is �rst levelized. Two
string variables, mstring(i) and pstring(i), are used to
store the long-path delay and short-path delay constraints
associated with gate i, respectively. For each gate and each
primary input (including pseudo PI's), an integer variable
wi 2 f0; 1g is introduced to indicate its status. wi has
the value 1 whenever mstring(i) and pstring(i) are non-
empty, i.e., when the constraints stored in mstring(i) and
pstring(i) must be propagated; otherwise, wi = 0.

The algorithm for propagating delay constraints sym-
bolically is given in Figure 1. In the following discussion of
the algorithm, we elaborate on the formation of mstring;
the formation of pstring proceeds analogously. At line 2,
for each gate j, wj and mstring(j) are initialized by set-
ting wj = 0, and mstring(j) to the null string. At line 5,
we check if wl = 0 for all l 2 fanin(k), i.e., if all of gate
k's input gates have a null mstring. If so, no constraints
need to be propagated. Next, at line 6, we check whether
exactly one of all of gate k's input gates, say gate l0, has a
non-empty mstring, while all others have null mstring's.
If so, we continue to propagate the constraint. This is
implemented by concatenating mstring(l0) and \dk", and
storing the resulting string in mstring(k). Also wk is set
to 1 to indicate that further propagation is required at this
gate. Finally, if more than one of gate k's input gates have
non-empty mstring, we add a new intermediate variable,
mi

k, and the string "mi
k" is stored at mstring(k) (line 9).

For each input gate whose mstring is non-empty (wl = 1),
we need a delay constraint (line 11).

3 Mapping Phase

The solution of the LP would, in general, provide a
gate size, xk that does not belong to the permissible set,
Sk = fxk;1 � � �xk;qkg. If so, we consider the two permissible
gate sizes that are closest to xk; we denote the nearest
larger (smaller) size by xk+ (xk�). Since the LP solution
is likely to be close to the combinatorial problem solution,
we formulate the following smaller problem:

For all k = 1 � � �N :
Select xk = xk+ or xk�, such that
for all FF's 1 � i ; j � L

si +Maxdelay(i; j) + Tsetup � sj + Pspec
si +Mindelay(i; j) � sj + Thold

We have developed an algorithm, based on a breadth-
�rst implicit enumeration approach, for mapping the gate
sizes obtained using linear programming onto permissible
gate sizes. Due to space limitations, the details of the
algorithm are omitted, and are given in [5].
4 Satisfying Unresolved Delay Constraints

After the mapping phase, if some of the delay con-
straints cannot be satis�ed, we have to �ne-tune some gate
sizes in the circuit. For each PO j (including pseudo PO's
at the inputs of FF's), the required maximum (minimum)
signal arrival times, reql(j) (reqs(j)), can be expressed as

reql(j) = sj + Pspec� Tsetup

reqs(j) = sj + Thold (7)

4.1 Long Path Constraints

For every PO that violates long-path delay constraints,
we identify the longest path to that PO. For example, if
gate n at the PO, with the longest path signal arrival time
mn, violates reql(n), we �rst �nd the longest path, Pl(n),
to Gn. The path slack of Pl(n) is calculated as

Pslack(Pl(n)) = reql(n)�mn (8)

For each gate along that longest path, we calculate the lo-
cal delay di�erence for each of the gates along path Pl(n).
Assume that Gk�1;Gk;Gk+1 are consecutive gates, in or-
der of precedence, on path Pl(n). The local delay and local
delay di�erence of Gk are de�ned, respectively, as

delay(Gk) = Rk+1
out �C

k+1
out + Rk

out �C
k
out (9)

�delay(Gk) = Rk+1
out ��C

k+1
out +�Rk

out �C
k
out (10)

where Rk
out and Ck

out are, respectively, the equivalent driv-
ing resistance of gate k, and the capacitive load driven by
gate k. Therefore, �delay(Gk) is the di�erence between
the the original local delay of Gk and the new local delay
of Gk after we replace it with a di�erent gate size that has
a di�erent value of Rk

out and Ck+1
out .

The size of the gate Gl that satis�es

�delay(Gl) < Pslack(Pl(n)) (11)

is changed. If none of the local delay di�erence satis�es
(11), we simply select the most negative one and replace
the gate with a new realization. This process continues
until the long-path delay constraints are all satis�ed.

4.2 Short Path Constraints

Violations of short-path delay constraints can be re-
solved by inserting delay bu�ers. However, bu�er insertion
cannot be carried out arbitrarily, since one must simultane-
ously ensure that the changes in the circuit do not violate
any long path constraints.

For every gate i, we de�ne the gate slack, Gslack(i), as
Gslack(i) = (12)8><
>:

minfmin
j2FO(i)

[mj +Gslack(j)�(dj +mi)]; (reql(i)�mi)g;

if gate i is at a PO:
min

j2FO(i)

fmj +Gslack(j)� (dj +mi)g; otherwise

At the beginning of this phase, we �rst back-propagate
gate slacks from PO's and all FF`s. The algorithm for
inserting bu�ers is shown in Figure 3. In line (4) of the al-
gorithm, beginning from the smallest bu�er in the library,
we try to insert a bu�er at the output of gate Gni. The de-
lay of the bu�er is denoted by delay(bf). Since the output
capacitance of Gni is changed during this process, we have
to recalculate its delay, which is denoted by delay0(Gni).

5 Partitioning Large Circuits

Ideally for a given synchronous sequential circuit, all
variables and constraints should be considered together to
obtain an optimal solution. However, for large circuits, the
size of the LP could be prohibitively large. Therefore, it is
desirable to partition large synchronous sequential circuits
into smaller subcircuits, so that we can apply the algorithm
described earlier to each subcircuit.

Traditional partitioning problems usually have explicit
objective functions. Our synchronous sequential circuit
partitioning problem, however, is made harder by the ab-
sence of a well-de�ned objective function; since our ulti-
mate goal is to minimize total area of the circuit, there is
no direct physical measure that could serve as an objective
function for partitioning. We develop a heuristic measure
that will be shown to be an e�ective objective function for
our partitioning problem.



We introduce the following terminology. An internal
latch is a latch whose fanin and fanout gates belong to
the same combinational block. A sequential block consists
of a combinational subcircuit and its associated internal
latches. Boundary latches are latches whose fanin and
fanout gates belong to di�erent combinational blocks.

For a given sequential block B, let LB denote the set of
boundary latches incident on B, and for a given boundary
latch L, BL denotes the set of sequential blocks on the
latch L. For each boundary latch L, we de�ne tightness
ratio � as

�in(L) = maximum delay from any boundary latch to
L in the unsized circuit;

�out(L) = maximum delay from L to any boundary
latch in the unsized circuit;

�(L) =

�
�in=�out if �in � �out
�out=�in if �in < �out

(13)

where the adjective \unsized" implies that all gates in the
subcircuit are at the minimum size.

For each pair of blocks (Bi;Bj), de�ne merit �ij as

�ij =
X

Bi

Lk
$Bj

�(Lk) (14)

where Bi

Lk$ Bj means latch Lk lies between Bi and Bj .
�ij is de�ned to be 0 if Bi and Bj are disjoint.

The cost associated with each block, Bi , is ci, the num-
ber of linear programming constraints required for solving
Bi . This number can be calculated very e�ciently. As-
sume that group Gk consists of blocks Bki ; i = 1; : : : jGk j.

Then we de�ne the cost of Gk , C(Gk ) =
PjGk j

i=1 cki, and

the merit of Gk , M(Gk ) =
PjGk j

i=1

PjGk j

j=i+1 �ij. We now
formulate the following optimization problem:

max
PN

k=1
M(Gk )

subject to C(Gk ) <MaxCnstrts: (15)

where N is the number of groups, MaxCnstrts is the max-
imum number of constraints that one wishes to feed to the
LP. Now that the partitioning problem has been explicitly
de�ned, we develop a multiple-way synchronous sequen-
tial circuit partitioning algorithm based on the algorithm
proposed by Sanchis [7].

For each group Gk , and each boundary latch L, de�ne
the connection number, �, as:

�Gk(L) = jfBjB 2 Gk and B 2 BLgj: (16)

The gain associated with moving B from Gi to Gj is

�ij(B)=
X

(�(Ll)jLl 2 LB and �Gj (Ll) = 1)

�
X

(�(Ln)jLn 2 LB and �Gi(Ln) = 2) (17)

Given the initial partition, the algorithm improves it
by iteratively moving one block from one group to another
in a series of passes. A block is labeled free if it has not
been moved during that pass. Each pass consists of a se-
ries of iterations during each of which the free block with
the largest gain is moved. During each move, we ensure
that the number of constraints in a group does not violate
the limit given by (15). The gain number is updated con-
stantly. At the end of each pass, the partitions generated
during that pass are examined and the one with the maxi-
mum objective value is chosen as the starting partition for
the next pass. Passes are performed until no improvement
can be obtained.

6 Experimental Results

The algorithm above was implemented in C on a Sun
Sparc 10 station. The test circuits includes many ISCAS89
benchmark circuits. Each cell in the standard-cell library
has �ve di�erent sizes of realization with di�erent driving
capabilities.

In Table 1, the experimental results of �ve ISCAS89
circuits are listed. For each circuit, the number of longest-
path delay constraints without using symbolic constraint
propagation algorithm and the number of constraints
pruned by the algorithm are given. It is clear that our
pruning algorithm is very e�cient. The number of delay
constraints is reduced by more than 95% on the average.
For a given desired clock period (Pspec), the optimized re-
sults for both with and without clock skew optimization
are shown. Depending on the structure of the circuits,
the improvement over total area of the circuit ranges from
1.7% to almost 20%.

Table 2 provides some more experiments of s1423. In
this experiment, we try to minimize the area using di�er-
ent speci�ed clock periods. For s1423, the minimum clock
period without clock skew optimization is about 32.5. On
the other hand, using clock skew optimization, the mini-
mum period can be as small as 22, which gives an almost
33% improvement in terms of clock speed.

Table 3 gives the experimental results for the partition-
ing procedure. Since most of the ISCAS89 circuits consist
of only one combinational block, we generated some syn-
chronous sequential random logic circuits. The number of
gates and FF's in those circuits are shown in Table 3. For
each circuit, we conduct three experiments. (1) Minimize
the area using clock skew optimization, but without par-
titioning. (2) Minimize the circuit area using both clock
skew optimization and partitioning. (3) Minimize the cir-
cuit with neither clock skew optimization nor partitioning.

It can be seen that the �rst approach is able to obtain
the best result as expected. However, the runtime is large.
Compared to the �rst approach, the second approach runs
much faster, at a very slight area penalty. Not surprisingly,
the third approach gets the worst solution. We also note
that the introduction of clock skew provides a signi�cantly
faster clock speed for circuit m1337.
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ALGORITHM Symbolic propagation()

1. for i = 1 to L
2. wj  0; mstring(j) \"; ptring(j) \"; 8 gates;
3. for j = 1 to max level
4. for each gate k at level j
5. if ( wl = 0 8 l 2 fanin(k) ); /* do nothing */
6. if ( among all l 2 fanin(k), exactly one w(l) = 1, others equal 0 )
7. mstring(k) mstring(l0) + \dk"; pstring(k)  pstring(l0) + \dk"; wk  1; /* wl0 = 1; l0 2 fanin(k) */
8. else
9. mstring(k) \mi

k"; pstring(k)  \pik"; wk  1;
10. for all wl = 1; l 2 fanin(k)
11. write down the constraints, mstring(l) + dk �mi

k; pstring(l) + dk � pik;

Figure 1: Symbolic constraints propagation algorithm.

ALGORITHM Insert buffer(n1)

1. Let Ps(n1) be the shortest path to gate n1, and Gn1; Gn2; � � � ;Gnk be on path Ps(n1)
(Gni fans out to Gn(i�1); 2 � i � k, k = # of gates along Ps(n1).);

2. i 1;
3. while ( pn1 < reqs(n1) )
4. if ( 9 a (smallest) buffer, bf, in the library such that:

delay(Gni) < delay0(Gni) + delay(bf) � delay(Gni) + slack(Gni) )
5. insert bf at the output of Gni;
6. incrementally update slack(j); mj; pj for each gate j in the circuit;
7. if ( pn1 � reqs(n1) ) stop;
8. else goto 1.
9. i i+ 1;

Figure 2: The bu�er insertion algorithm.

Table 1: Performance comparison with and without clock skew optimization.

Circuit longest-path constraints Pspec with clock skew opt. w/o clock skew opt. A1
A2

original pruned % Area (A1) Runtime Area (A2) Runtime

s208 3276 214 6.5% 6.8 1404.00 3.32s 1745.25 3.06s 0.805
s420 11830 544 4.6% 12.0 2522.00 9.06s 2952.63 8.94s 0.854
s838 55948 2670 4.8% 10.5 6162.00 100.67s 7324.42 43.77s 0.841

s953 34470 1788 5.2% 10.5 5516.87 243.93s 5898.75 67.69s 0.935
s5378 911854 6593 0.7% 10.0 29219.12 2633.78s 29717.53 1414.49s 0.983

Table 2: Improving possible clocking speeds using clock skew optimization.

Circuit # of # of # of # of Pspec with clock skew opt. w/o clock skew opt. A1
A2

PI's PO's FF's gates Area (A1) Runtime Area (A2) runtime

s1423 17 5 74 657 32.5 9998.63 1130.89s 10545.71 84.05s 0.948
30.0 10154.08 1450.03s - - -
22.0 12178.83 1605.43s - - -
20.0 - - - - -

Table 3: Performance comparison of the partitioning procedure.
Circuit # of # of # of # of # of

PI's PO's FF's gates blocks
m1337 51 53 97 1337 42

m1783 90 54 124 1783 43

Circuit Pspec with clock skew optimization w/o clock skew opt.
w/o partitioning with partitioning
Area Runtime MaxCnstrts N Area Runtime Area Runtime

m1337 9.5 12364 135.35s 1500 6 12370 58.96s 13055 47.54s
9.25 12353 151.34s 1500 6 12356 57.91s - -
6.75 13049 186.61s 1500 6 13112 60.94s - -

m1783 9.5 18564 427.14s 300 16 18743 155.07s 21074 140.23s
1000 8 18708 156.55s
2000 6 18572 159.93s


