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ABSTRACT
Routing congestion has become a serious concern in today’s VLSI
designs. In this paper, we propose a technology mapping algo-
rithm that minimizes routing congestion under delay constraints.
The algorithm employs a dynamic programming framework in the
matching phase to generate probabilistic congestion maps for all
the matches. These congestion maps are then utilized to minimize
routing congestion during the covering, which preserves the delay-
optimality of the solution using the notion of slack. Experimental
results on benchmark circuits in a 100 nm technology show that the
algorithm can improve track overflows by 44%, on an average, as
compared to the conventional technology mapping while satisfying
delay constraints.

Categories and Subject Descriptors
B.6.3 [Design Aids]: Automatic synthesis; Optimization

General Terms
Algorithms, Design

Keywords
Routing congestion, technology mapping, logic synthesis

1. INTRODUCTION
Following Moore’s law [1], the number of on-chip transistors are

doubling every two years, while the number of wires are growing
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almost linearly with the number of gates. This increasing design
complexity results in circuits that face the problem of routing con-
gestion, which can be described as the unavailability of a sufficient
number of tracks to route wires. Moreover, wires are becoming in-
creasingly resistive with each technology generation in spite of the
advances in manufacturing techniques [2, 3], and therefore, inter-
connect delays have been seen to dominate gate delays since the
last couple of technology generations. Together, routing conges-
tion and the dominance of interconnect delays make timing closure
difficult: if wires are detoured to avoid congested regions,they may
incur larger delays and thus violate timing constraints.

The flexibilities offered by the placement and routing stages to
alleviate congestion are often insufficient, and addressing the prob-
lem of routing congestion only during these stages is known to
result in a number of design iterations. On the other hand, logic
synthesis offers a large degree of freedom in handling the routing
congestion problem, but it may suffer from inaccurate estimates
as it operates at a higher level of abstraction than the placement
and routing stages. In the synthesis domain, technology mapping
is a powerful transformation which makes decisions about wires
and therefore, affects congestion. Consequently, it wouldbe an ex-
cellent stage during which one could try to alleviate congestion,
provided it were possible to obtain reasonably accurate congestion
estimates.

1.1 Previous Work
Several technology mapping algorithms that target traditional

objectives such as area, delay, or power exist in the literature [4–6].
Recently, there have been attempts to consider congestion during
the mapping. These approaches include the following: placement
driven mapping for FPGA’s [7], methods employing a cost function
that involved wirelength as a metric for routing congestion[8–10],
a procedure based on predictive probabilistic congestion estimates
[11], and a method based on pre-layout wirelength prediction [12].
In [7], Conget al. present an iterative congestion-aware mapping
and placement procedure for FPGA’s; however, in this work, the
congestion metric used by them pertains not to routing but tocells,
being defined as the number of cells placed in a given location. The
approaches due to Pandiniet al.[8,9] and Stoket al.[10] rely on the
total wirelength, which, being a global metric, fails to capture the
locality property of the routing congestion. The work in [11] em-



ploys predictive probabilistic congestion estimates, andtherefore,
suffers from the inaccuracies inherent in any predictive scheme.
Furthermore, it focuses solely on the circuit area. Other related
work lies in the domain of structural logic synthesis [13,14], where
metrics for routing congestion are proposed to guide the logic syn-
thesis. Anadhesionis presented as a metric for routing congestion
in [13], while structural pin density is shown to correlate well with
congestion in [14]. The adhesion, being computationally expen-
sive, may not be suitable for technology mapping purposes. The
structural pin density, on the other hand, ignores congestion contri-
bution of wires passing over a given region and therefore, may not
be accurate.

1.2 Our Contributions
Considering routing congestion during the mapping is more com-

plex than traditional objectives such as area or delay due tothe fol-
lowing reasons.

• Unlike conventional objectives, routing congestion, being lo-
cality dependent, cannot be captured using a single number
at the technology mapping stage [9].

• Even with the application of a probabilistic congestion map,
there is a “chicken-and-egg” problem between mapping and
placement stages, since such a congestion map is required
before mapping, but cannot be created until after the place-
ment of a mapped netlist.

To overcome this “chicken-and-egg” problem, previous approaches
have either used predictive congestion maps, as in [11] or have
employed metrics such as wirelength or mutual contraction,as in
[9,10]. The limitation of the former approach has been the reliance
on empirical data both to justify the heuristic objective function
driving the mapping and to predict congestion maps for mapped
netlists based solely on subject graphs, while the latter approaches
attempt minimizing wirelength, assuming that it correlates well
with congestion. In contrast, our current work provides a sound
theoretical basis for the mapping procedure that guarantees opti-
mal delays as well as allows the use of accurate congestion maps
that are created as the mapping proceeds. The contributionsof this
work are as follows:

1. We formulate the technology mapping problem targeting rout-
ing congestion as that of minimizing the total track overflow
under the specified delay constraints. Exploiting the dynamic
programming framework, we provide a delay-optimal solu-
tion to the problem under the assumption that the placement
assigned to the cells during the mapping is preserved.

2. Instead of predicting congestion from a generic netlist,such
as a subject graph, and justifying its use empirically to over-
come the cyclic dependence between the mapping and place-
ment stages, we propose a matching procedure to generate
two-dimensional congestion maps for all delay-optimal map-
ping solutions in a bottom-up manner. The procedure is gen-
eral enough and can be applied not only to optimize differ-
ent cost functions, such as maximum congestion or track
overflow, defined over the congestion map, but also to op-
timize other physical properties that can be accurately cap-
tured using two-dimensional maps, for instance, temperature
or power density maps.

3. In the covering phase, where the matches are selected from
among the stored choices, we employ an explicit notion of
the slack to further optimize the design unlike the classi-
cal covering approach [15, 16], which does not explore this

potential. Our covering technique chooses the congestion-
optimal matches that minimize the total track overflow and
also satisfy the slack constraints. This technique can be eas-
ily extended to optimize even traditional objectives, sucharea
or power under delay constraints without introducing any
sub-optimality in delays. Experimental results on an entire
ISCAS’85 benchmark suite confirm that delay constraints are
always satisfied while improving track overflow by 44%, on
an average.

The rest of the paper is organized as follows. Section 2 intro-
duces formal definitions and the background for the technology
mapping problem, while Section 3 describes the generation of con-
gestion maps during the matching phase. Section 4 illustrates the
slack-constrained congestion-aware covering algorithm and Sec-
tion 5 discusses the extensions to the algorithm. Section 6 presents
experimental results followed by the conclusion in Section7.

2. PRELIMINARIES
The following terminology is used in this paper. A Boolean net-

work is a directed acyclic graph (DAG), in which a node denotes a
Boolean function,f : Bn → B, whereB = {0, 1}, andn is the
number of inputs to the node. Traditional technology mapping is
usually preceded by a decomposition of this abstract network into
one that contains primitive gates, such as 2-input NAND’s and in-
verters. The decomposed network is referred to as a subject graph
or a premapped netlist. The subject graph is mapped on to a set
of cells in the library during technology mapping; the resulting net-
work is known as a mapped netlist, which is placed in a given block
area and routed. The block area is divided into bins for congestion
analysis purposes or for global routing. Each bin contains alimited
number of horizontal and vertical tracks. The track overflowand
congestion can be defined for every bin as follows.

DEFINITION 2.1. The horizontal (vertical) track overflow for a
given bin, (T bin

h(v)), is defined as the difference between the number
of horizontal (vertical) tracks required to route the nets through the
bin and the available number of horizontal (vertical) tracks.

DEFINITION 2.2. The horizontal (vertical) congestion for a given
bin, Cbin

h(v), is the ratio of number of horizontal (vertical) tracks re-
quired to route the nets through the bin to the number of horizontal
(vertical) tracks available.

In this paper, when we use the terms “track overflow” or “conges-
tion” without specifying a horizontal or vertical direction, we mean
that the terms are equally applicable to both horizontal andvertical
directions.

A positive track overflow or a congestion of more than 1.0 means
that sufficient tracks are unavailable for the routing, while a nega-
tive value of the overflow or a congestion smaller than 1.0 indicates
the availability of tracks. The total track overflow (OF ) is the sum
of positive track overflows over all the bins, as shown in the follow-
ing equation

OF = Σ∀bins:Cbin>1.0T
bin (1)

This overflow can be computed after the generation of the con-
gestion map, which can be derived either using probabilistic tech-
niques or by performing routing. Employing these definitions, the
problem of delay oriented technology mapping targeting conges-
tion can be defined as follows.

PROBLEM DEFINITION 1. Given a subject graph of a network
and a library of gates, generate a mapped netlist that minimizes the
total track overflow under specified delay constraints.



Traditional mapping procedures use a dynamic programming frame-
work that involves two phases, referred to asmatchingandcover-
ing: in the former, non-inferior mapping solutions are stored during
a topological traversal of a circuit, while, in the latter, amapped
network is built by selecting from these solutions during a reverse
topological traversal. Usually, technology mapping employs one
of the following two classes of delay models: load- or gain-based.
In this paper, we consider only load-based delay models, as our
algorithm can be easily extended to the one based on the latter.
The load-based delay model is shown in Figure 1(a) for a typical
standard cell: it shows a straight line with the internal delay of
the gate,Dinternal, as an intercept on the delay axis, while the
slope of the line indicates the effective driver resistance1. Tech-
nology mapping targeting delay involves storing piece-wise linear
load-delay curves,{(l1, D1), (l2, D2), · · · }, during the matching
phase, whereli andDi, respectively, denote the load and delay co-
ordinates of an end-point of a piece-wise linear segment. Ateach
node, a set of choices that are delay-optimal for the load ranges cor-
responding to piece-wise linear segments is stored on thesecurves.
These choices are referred to as non-inferior matches. One such
curve is shown in Figure 1(b) with three non-inferior matches M1,
M2, andM3, whereM1 is optimal for the load range[0, l1], M2

for the range(l1, l2], andM3 for larger load values. During the
covering phase, when loads are known, delay-optimal matches are
chosen from the curves. SIS [16] contains an implementationof
a delay oriented mapper based on this scheme, and we employ the
same framework for our technology mapping targeting routing con-
gestion.

DelayDelay

Load Load

Dinternal
Rdriver

l1 l2

M1

M2
M3

(a) (b)

Figure 1: (a) A load-based delay model for a typical standard
cell, such as an inverter. (b) A typical load-delay curve stored
during the matching.

The concept of employing a companion placement for the sub-
ject graph to estimate wirelengths or congestion maps is notnew.
It has been used by previous technology mapping or physical syn-
thesis methods [9–11, 15, 18], and we employ the same concept
here. Based on such a companion placement, the congestion maps
are generated during the matching phase employing a well known
probabilistic method, which is shown to have a good fidelity with
post-routing congestion in [17, 19]. The probabilistic estimation
technique assumes all routes to be equally possible for a given net
and then computes the demands for tracks as a ratio of the num-
ber of paths passing through the bin to the total number of paths.
Figure 2 shows the congestion computation for a net. Six possible
paths, assuming only L- and Z-shaped routes2, through different
bins in the bounding box of a net are shown in the figure. The

1The delay of a cell also depends on the slopes of the input signal
transitions, which are considered during precise timing analysis,
but are often ignored in the delay models at the technology mapping
stage.
2L- and Z-shaped routes are shown for illustration purposes only.
In practice, we allow the nets to have unlimited bends, as in [19].
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Figure 2: Probabilistic congestion estimation for a net assum-
ing only L- and Z-shaped routes [17]. Only the demands for
horizontal tracks in each bin are shown.

numbers associated with each bin show the demands for the hori-
zontal tracks. For instance, the leftmost bin in the bottom row has
a demand of 1.5, since there are three routes, route 1, 5, and 6,
which require half track each in that bin. Therefore, the congestion
for the bin due to the net is 1.5

6×hbin
, where,hbin is the number of

horizontal tracks available for the bin.

3. CONGESTION MAP GENERATION
DURING THE MATCHING PHASE

The matching phase of dynamic programming based delay ori-
ented technology mapping typically involves storing a loadvs. de-
lay curve at each node. We employ the same method and preserve
the curve containing non-inferior matches that minimize the de-
lay for different load values. During the construction of the curve,
wire-loads and wire-delays are accounted for based on the com-
panion placement of the underlying subject graph. To evaluate dif-
ferent mapping solutions based on their contribution to thetotal
track overflow, we associate a probabilistic congestion mapwith
each match. This congestion map represents wires due to the map-
ping solution corresponding to a given match, as explained in the
following subsections.

3.1 Bottom-up Congestion Map Construction
To generate a global as well as a partial view of congestion, we

propose a bottom-up congestion map construction. A match ata
given node is assumed to be placed at the center of gravity of its
fanins and fanouts, and multi-terminal nets are modeled employ-
ing the well known star topology. Figure 3 shows the creationof a
congestion map for a matchM1 at the nodeN1. The matchM1 re-
ceives its inputs from two nodes:N2 andN3. During the topologi-
cal traversal, these nodes are processed before nodeN1 and hence,
non-inferior matches and the corresponding congestion maps are
already stored at these nodes. The maps of horizontal congestion
for matches atN2 andN3 that minimize the delay for the solution
due to the matchM1 are shown in Figure 3(b) and (c), respectively,
while the horizontal congestion contribution due to the match M1

is shown in 3(d). For the purposes of illustration, only the track
demands are shown as congestion without loss of generality.In
Figure 3(d), the right-most bin in the third row has a horizontal
track demand of0.25, as there are2 paths from the output of the
match atN2 to an input ofM1. This results in a probability of1

2
of
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Figure 3: Generating congestion maps during the matching: (a) A choiceM1 at nodeN1. Maps for horizontal congestion for matches
at N2 and N3 are shown in (b) and (c), respectively, while (d) shows congestion contribution due to M1 and (e) shows the congestion
map at N1 due toM1.
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Figure 4: The congestion in each bin is divided by the number
of fanouts for forward propagation.

the path through the bin being selected. Furthermore, for that path,
only half of one horizontal track is occupied under the assumptions
of probabilistic congestion estimation [19], resulting ina demand
of 0.25. Figure 3(e) shows the map for horizontal congestion for
the solution involving the matchM1: it is obtained by the simple
bin-wise sum of the congestion maps atN1, N2, andN3. Thus,
for instance, the demands in bin (1, 2) in the congestion mapsin
figures 3(b), (c) and (d) are added to create the demand in bin (1,
2) in the congestion map shown in Figure 3(e). This congestion
map represents horizontal track demands due to the subset ofwires
from the transitive fanin cone ofN1, as these wires appear in the
mapping solution corresponding to the matchM1. For a different
match at nodeN1, this subset of wires will be different leading to a
different congestion map. Note that these congestion maps account
for the relevant subsets of wires from only the transitive fanin cone
of a given node, ignoring wires in the rest of the network. Thus,
they do not represent a global picture of congestion; rather, they
represent a partial picture that accounts only for the matches and
corresponding wires in the transitive fanin cone of a given node. It
is clear that a complete picture of congestion that represents all the
wires that will appear in the mapped network cannot be obtained
until matching and bottom-up congestion map generation is per-
formed for all the nodes. This is the reason why we postpone the
total track overflow computation until the covering stage.

3.2 Handling Multiple Fanouts
For the multiple fanout points, as shown in Figure 4, the con-

gestion in each bin is divided by the number of fanouts. It allows

the construction of the congestion map for the solutions at primary
outputs by simply carrying out the bin-wise sum of the correspond-
ing congestion maps. This heuristic is similar to the one employed
in [5] for the area minimization under delay constraints, where in
spite of such a division of gate-areas at multiple fanout points, ad-
dition of the gate-areas due to points on area-delay curve atprimary
outputs generates the gate-area for an entire solution.

Thus, employing simple algebraic operations such as addition
and multiplication, two-dimensional congestion maps can be cre-
ated during the matching phase. These maps can be used to op-
timize any cost function defined on them, for instance, totaltrack
overflow or maximum congestion. Moreover, the entire technique
to generate congestion maps is quite general and can be applied
to create two-dimensional maps for even other physical properties,
such as power density.

3.3 Analogy with the Classical Matching
The bottom-up congestion map generation is analogous to the

work in [5], where area minimization under delay constraints is
sought. However, in contrast, our work targets routing congestion
under the same constraints, rather than the area as in [5]. The par-
tial congestion maps during the matching in our work correspond
to gate-areas for points on the area-delay curve in [5]. Justas the
gate-area for a point on the curve models the corresponding gate-
areas due to the match at a given node and its transitive fanincone
in [5], the congestion map for a match at a given node accountsfor
wires due to matches in the transitive fanin cone and represents the
corresponding probabilistic congestion of these wires in our work.
Just as the gate-area for entire network cannot be predicteduntil the
end of the matching phase in [5], so is the inability of the dynamic
programming framework in our work to predict the congestionmap
of entire network until the end of the matching. Of course, com-
pared to a metric like gate-area, the routing congestion optimiza-
tion objective is far more complicated, as noted in several recent
works [9, 11, 13, 14]. We also employ a better delay computation
approach as compared to [5]. In their work, the constructionof
area-delay curves introduces sub-optimality due to unknown loads
in the matching phase. In contrast, we store non-inferior solutions
using piece-wise linear load-delay curves, which serves the follow-
ing purposes: (a) it does not introduce any sub-optimality in delays
due to the load computation and therefore, allows one to generate
a delay-optimal solution; and (b) because of the ability to generate
a delay-optimal solution, it ensures that if the delay-optimal so-
lution cannot meet constraints, no other solution can. Moreover,
we utilize the companion placement to account for wire-loads and
wire-delays, which are ignored in their work.



3.4 Comparison with Competitive
Congestion-aware Matching Techniques

The matching procedures employed in previous approaches on
congestion-aware mapping either compute the wire-length,as in
[8–10], or the congestion cost based on probabilistic estimates, as
in [11]. The following are the limitations of these approaches.

1. All of the approaches heuristically modify the area or de-
lay cost function by adding wirelength or congestion penalty
terms. This introduces sub-optimality in the estimation of
these objective functions, and therefore, none of these ap-
proaches can ensure meeting area or delay constraints (under
the usual assumptions about delay models and placement fi-
delity) while minimizing routing congestion.

2. As pointed out earlier, metrics such as wirelength and pre-
dicted congestion may not capture an accurate picture of the
congestion.

These limitations are overcome easily by our matching procedure,
which stores all non-inferior matches along with their probabilistic
congestion maps that are constructed using simple algebraic oper-
ations such as addition and multiplication in a bottom-up manner.
Moreover, although the metrics proposed in previous approaches
have been applied during the matching phase, none of them ex-
tends these metrics to guide the covering, which actually selects
the mapping solution, and thus, these techniques ignore thesearch
space available during the covering. In contrast, we utilize the gen-
erated congestion maps during the covering process to compute the
total track overflow due to different mapping choices, and tose-
lect the one that minimizes this track overflow while satisfying the
delay constraints. This is explained in the following section.

4. CONGESTION MINIMIZATION UNDER
DELAY CONSTRAINTS DURING THE
COVERING PHASE

To preserve the delay-optimality of the solution while improving
the congestion, we associate the notion of a slack with all nodes.

DEFINITION 4.1. The slack at a given node is the difference be-
tween the required arrival time at that node and the actual arrival
time.

A positive value of slack means that the signal arrives earlier than
the required arrival time, while a negative value implies that it
arrives later than the required time. During traditional covering,
delay-optimal choices that minimize the delay for a given load are
chosen at each node. The load-delay curves that are built during the
matching phase also assume the same. We observe that the cover-
ing need not choose delay-optimal choices at all nodes to respect
the delay constraints. At nodes with positive slack, matches that
are not necessarily delay-optimal can still be chosen, as long as
they meet the delay constraints. Our covering algorithm employs
this idea to minimize the total track overflow. We explain thesame
using the following example.

Consider a load-delay curve, shown in Figure 5, stored during
the matching for a node. During the covering, when the node is
processed, let us assume that that it has a slack of10 and it has to
drive a load of 15. The delays due to matchesM1, M2, andM3

for this load are, respectively,95, 90, and95. In this case, regular
covering will choose matchM2, since it minimizes the delay, while
our congestion-aware covering will choose a match that minimizes
the track overflow. Note that choosingM1 andM3 does not affect
the delay-optimality of the overall solution in this case, since there

Delay
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Figure 5: A piece-wise linear load-delay curve with three
matches matchesM1, M2, and M3 optimal for load ranges
[0, 10), [20, 30), and [30,∞), respectively. The curve has a slope
of 3 for the load values [0, 10), a slope of2 for loads between
[20, 30), and the slope of1 for remaining load values.

is a slack of10 at the node, and the arrival times at the node due to
both,M1 andM3, satisfy this slack constraint.

4.1 Algorithm for the Covering
The pseudo-code for the covering that targets track overflowun-

der delay constraints is shown in Algorithm 1. It begins withthe
computation of the delay-optimal matches at the primary outputs.
The slacks (Soi

) are then computed for all the outputs. The con-
gestion mapCM for this solution is built by the bin-wise addi-
tion of the congestion maps due to delay-optimal matches forall
the primary outputs. This congestion map represents the contribu-
tions of all the wires that will appear in the mapped network due
to the conventional delay-optimal solution. The total track over-
flow OF corresponding to this solution is estimated from the con-
gestion map using Equation (1). After this initialization,all the
nodes (v ∈ V ) are processed in the reverse topological order. First
the delay-optimal matchmD−optimal

v is determined for a node,
followed by a computation of the slack-constrained congestion-
optimal matchmC−optimal

v using a procedure that is explained
later. If the overflowOF C−optimal

v due to the slack-constrained
congestion-optimal matchmC−optimal

v is smaller than that due to
the delay-optimal matchmD−optimal

v , thenmC−optimal
v is chosen

as the optimal matchmOptimal
v . In this case, the congestion map

is updated to reflect the change due to this match, the new overflow
is stored, and the slacks at the inputs of the match are also updated.
Instead, if the delay-optimal match is chosen as the optimalmatch
mOptimal

v , then the slack is simply propagated to the inputs of the
match. Finally, the loads at the inputs of the selected optimal match
(be it delay-optimal or slack-constrained congestion-optimal) are
incremented to reflect the selection of that match.

4.2 Procedure for Finding Slack-constrained
Congestion-optimal Match

The pseudo-code for selecting the slack-constrained congestion-
optimal match is shown in Algorithm 2. It considers all the matches
except the delay-optimal match such that they satisfy the slack con-
straint (as enforced in line 6 in the pseudo-code). Among these
matches, one that results in the lowest total track overflow is stored
as the slack-constrained congestion-optimal match. Note that we
can store a match that results in the smallest maximum conges-
tion as a congestion-optimal one, leading to the optimization of the
maximum congestion. In general, any cost function defined over
the congestion maps can be optimized by storing a match that op-



Algorithm 1 Perform the covering targeting congestion minimiza-
tion under delay constraints

Input: A Boolean networkG(V, E), a set of primary outputsO ⊆
V , sets of non-inferior matchesMv and their congestion maps
CMv for v ∈ V

Output: Assignment of congestion-optimal matchm ∈ Mv to
v ∈ V , which satisfies delay constraint

1: for ∀oi ∈ O do
2: mD−optimal

oi
← DelayOptimalMatch(Moi

, loadoi
)

3: Soi
← DRequired

oi
−D

m
D−optimal
oi

4: end for
5: CM ←

P|O|
i=1 CM

m
D−optimal
oi

6: OF ← ComputeOverflow(CM )
7: for ∀v ∈ V , in reverse topological orderdo
8: mD−optimal

v ← DelayOptimalMatch(Mv , loadv)
9: mC−optimal

v ← CongestionOptimalMatch(Mv , sv)
10: if OF C−optimal

v < OF then
11: mOptimal

v ← mC−optimal
v

12: CM ← CM − CM
m

D−optimal
v

+ CM
m

C−optimal
v

13: OF ← OF C−optimal
v

14: UpdateSlacks(mC−optimal
v , sC−optimal

v )
15: else
16: mOptimal

v ← mD−optimal
v

17: UpdateSlacks(mD−optimal
v , sv)

18: end if
19: IncrementLoads(mOptimal

v )
20: end for

timizes the given objective as a congestion-optimal match.The
corresponding slack updates are maintained with the congestion-
optimal match. If the track overflow due to this match is lower
than that due to the delay-optimal match, then the slack-constrained
congestion-optimal match is stored as the optimal match, asde-
scribed earlier.

4.3 Time Complexity of the Algorithm
The time-complexity of the entire mapping algorithm is almost

same as that of a conventional mapping. Both conventional as
well as our congestion-aware mapping techniques employ thesame
matching procedure, except that the matching phase in our case
computes and stores congestion maps for non-inferior matches. If
there areNBins number of bins in the layout, then the matching
phase would requireO(NBinsNmatches) time, whereNMatches is
the number of non-inferior matches over entire network, since the
computation of a congestion map requiresO(NBins) time. Since
NBins is a constant (although possibly large as compared to other
constants subsumed byO()), the matching phase for our approach
requiresO(Nmatches) time for a given layout. During the cover-
ing, CongestionOptimalMatch() function is called for all the nodes.
The function requiresO(|Mv |NBins) time, since, in the worst case,
it has to consider all the matches at the node to find the slack-
constrained congestion-optimal one. Over all the nodes, therefore,
the covering requiresO(Nmatches) time, which is same as that of
the matching phase.

5. EXTENSIONS TO THE ALGORITHM
Our algorithm, which is based on the load-based delay model,

can be easily extended to the one based on gain-based delay model.
Note that during technology mapping based on the gain-basedde-
lay model, the sizes of the cells are adjusted depending on the loads
that they drive, and this does not affect the wires and hence,the

Algorithm 2 Find congestion-optimal match that satisfies the slack
constraint
Input: A set of matchesMv for v and available slacksv at nodev
Output: Congestion-optimal match satisfying the slack and the

corresponding total track overflowOF C−optimal
v

1: Procedure CongestionOptimalMatch(Mv , sv) {
2: OF C−optimal

v ←∞
3: if sv > 0 then
4: for all m ∈Mv −mD−optimal

v do
5: Dmv ← DelayDueToMatch(loadv )
6: if Dmv −DD−optimal

v < sv then
7: CMnew ← CM − CM

m
D−optimal
v

+ CMm

8: OFnew ← ComputeOverflow(CMnew )
9: if OFnew < OF C−optimal

v then
10: OF C−optimal

v ← OFnew

11: mC−optimal
v ← m

12: sC−optimal
v ← sv − (Dmv −D

m
D−optimal
v

)

13: end if
14: end if
15: end for
16: end if
17: }

computed routing congestion in the design under the assumptions
about the placement of cells. The extension of our tree-mapping
algorithm to the DAG-mapping one, such as [6], is, however, not
obvious because of the duplication of wires due to the correspond-
ing replication of the underlying logic gates.

In our current implementation, we do not store matches that are
potentially good from the congestion standpoint, but have possibly
inferior delay characteristics. Consequently, we do not minimize
the congestion to the fullest extent possible. This can be remedied
by storing a few inferior matches apart from those on the regular
load-delay curve, at the cost of extra computation and memory. The
memory requirement of our mapper is larger than that for a conven-
tional mapper due to the storage of congestion maps for all non-
inferior choices during the matching phase. This requirement may
be reduced by storing just the bins corresponding to the bounding
box that is affected by the mapping solution. Moreover, the mem-
ory efficient variant of the algorithm, which has the same memory
capacity as that of the conventional delay oriented mapping, is pos-
sible by restricting the selection of the congestion-optimal matches
to the primary outputs. In such a variant, the congestion maps for
all non-inferior matches at all nodes except for the primaryoutputs
are not required after the maps for the matches for the subsequent
nodes in the topological order are computed during the matching
phase, and hence, the memory, which is occupied by the corre-
sponding congestion maps that have served the purpose of thefor-
ward propagation, can be freed and re-used. We expect our current
mapper to be used in an engineering change order (ECO) mode,
where at most a few thousand cells corresponding to the congestion
hot-spots are (re-)synthesized. It is an ideal candidate for such an
application, since it ensures that delay constraints will be met while
minimizing total track overflow. This is demonstrated by theexper-
imental results in the following section, which shows that circuits
with more than 3500 cells can be handled well by our algorithm.

6. EXPERIMENTAL RESULTS
6.1 Experimental Setup

The congestion-aware mapping algorithm is implemented in C
and incorporated in SIS [16]. We performed experiments on the



Example Area Conventional [16] / Ours
Overflow (% gain) Delay MC RU # of cells Run-time

µ2 ps % s
C1355 3439 227 / 134 (40) 789 / 786 1.70 / 1.30 80 / 81 621 / 592 11 / 12
C1908 3616 323 / 225 (30) 1059 / 1042 1.70 / 1.40 80 / 80 578 / 571 12 / 13
C2670 11707 417 / 167 (59) 1258 / 1240 1.65 / 1.20 75 / 77 1482 / 1426 24 / 51
C3540 25994 1078 / 294 (72) 1655 / 1632 2.25 / 1.40 75 / 80 3254 / 3105 90 / 279
C432 1962 66 / 49 (25) 854 / 842 1.40 / 1.20 80 / 82 264 / 311 7 / 9
C499 3550 262 / 135 (48) 823 / 821 1.60 / 1.20 80 / 79 595 / 563 11 / 13
C5315 17265 1100 / 289 (73) 1120 / 1114 2.20 / 1.40 75 / 77 2122 / 2131 38 / 121
C6288 21379 515 / 452 (12) 4771 / 4731 1.70 / 1.40 80 / 80 3737 / 3596 88 / 135
C7552 28223 1343 / 547 (59) 1341 /1309 1.60 / 1.30 75 / 73 3198 / 3080 132 / 213
C880 3944 378 / 260 (31) 890 / 884 1.70 / 1.20 80 / 76 584 / 575 12 / 13

Average 554 / 255 (44) 1455 / 1439 1.74 / 1.29 78 / 78 164 / 159 42 / 85

Table 1: Comparison of the conventional mapping with our algorithm. ‘RU’ and ‘MC’ denote the average row utilization and
maximum congestion, respectively.

entire3 set of ISCAS’85 benchmarks employing the design flow
shown in Figure 6. For a given benchmark, the subject graph con-
taining primitive gates is placed to create the companion placement.
This is followed by either the conventional or our congestion-aware
mapping. For the fair comparison, the conventional delay oriented
technology mapping algorithm in SIS [16] is modified to use the
companion placement information to compute wire-loads andwire-
delays, as our congestion-aware technology mapping utilizes the
same information not only for the bottom-up congestion map gen-
eration but also for the wire-load and wire-delay computation. The
comparison with the competitive congestion-aware delay oriented
mapping approaches [9,10] could not be performed because ofthe
unavailability of the access to proprietary benchmarks andtools.
After the technology mapping, the resulting netlists are placed and
routed. For all the experiments, technology mapping is performed
employing lib2.genlib library in SIS, which is characterized for 100
nm technology [20] and contains up to 4 strengths for each cell.
To generate delay constraints for a given benchmark, conventional
technology mapping is run first and the delay of the most critical
primary output is assigned as the required arrival time for all pri-
mary outputs. For the placement, we employ the publicly available
recursive bisectioning based placer Capo [21], while, for routing,
we use a router [22] that is based on non-Hanan routing. The post-
routing delays are measured employing a static timing analyzer.

6.2 Analysis of Experimental Results
Table 1 shows the comparison of post global routing results due

to conventional and our mapping. It shows block area in Column 2
for the benchmarks in Column 1, while Columns 3, 4, 5, 6, 7, and
8 show the total track overflow (with the improvement percentage),
the delay, the maximum congestion, the average row utilization, the
number of cells, and the run-time, respectively. All the experiments
are run on Sun Ultra Sparc 60 machine with 400 MHz clock speed.
From the table, we can observe the following:

1. Our mapping algorithm has been consistently able to reduce
the track overflow, as shown in Column 3. On an average,
the reduction is 44%. This improvement is encouraging, es-
pecially since the mapped netlists are re-placed without using
the companion placement information employed during the
technology mapping. The impressive gains in overflow also
underline the ability of the technology mapping to reduce the
congestion. The largest improvement, 72%, is in the case of

3The results on the smallest benchmark from the ISCAS’85 suite,
C17, are not shown, as its implementation requires only a fewgates,
becoming an un-interesting case to show meaningful comparison.
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Figure 6: Design flow for conventional and congestion-aware
technology mapping

C3540, while the smallest one is in case of C6288. The small
improvement in case of C6288 can be attributed to the rela-
tively lower congestion in the design as compared to other
benchmarks of a similar size.

2. From Column 4, it is clear that the delays due to congestion-
aware mapping have improved slightly, as the algorithm main-
tains the delay-optimality, resulting in the same delays as
the conventional mapping. The subsequent stages, especially
the routing, show the effect of reduced congestion, causing
smaller detours and hence, smaller delays as compared to the
conventionally mapped netlists.

3. The maximum congestion shown in Column 5 has improved
due to our mapping in all the cases with an average improve-
ment of 25%, even though the algorithm targets only the to-
tal track overflow. This can be ascribed to the correlation
between the maximum congestion and the total track over-
flow: generally, high overflow implies the large maximum
congestion and vice-versa.

4. It appears from Column 6 that the average row utilization has
increased, as in cases of C2670 and C3540, and has also de-



creased, as in cases of C7552 and C880, with the track over-
flow. This can be attributed to the corresponding increase
or decrease in the cell area. Depending on the context, an
area increase or decrease can result in a small track over-
flow: an example in [11] shows that even an area optimal
match, which results in a relatively smaller area, can worsen
the congestion, while it is also possible that an increase in
area due to more gates, and hence, more wires, proves detri-
mental to the objective of reducing the congestion. This is
why the congestion is relatively insensitive to the average
row utilization, when the utilization is not too high.

5. As shown in Column 7, the number of cells in the congestion-
aware mapped netlists have decreased slightly in all cases
but that of C432. The decrease in the number of cells can be
associated with the corresponding reduction in the number of
nets, which may be indirectly correlated with metrics such as
structural pin-density, and hence, congestion, as pointedout
in [14]. In case of C432, however, employing more logic
cells has resulted in the congestion alleviation, which canbe
explained using the discussion in the previous remark on the
average row utilization.

6. Finally, as can be seen from Column 8, the run-times for
congestion-aware mapping are still comparable to those of
the conventional one. On an average, the run-time is 2.02
times worse, but still practical, being within a few minutes
on a 400 MHz Sun Ultra Sparc machine, than that for the
conventional mapping. It shows that the constants subsumed
by O() in the time complexity expression in Section 4.3 are
not too dominating. This bodes well for the applicability of
the algorithm.

7. CONCLUSION
In this paper, we have presented a technology mapping algorithm

targeting routing congestion. We have shown how to overcome
the “chicken-and-egg” problem during the mapping and placement
stages by generating and propagating congestion maps associated
with each choice during the matching phase. We have proposeda
covering procedure, which exploits slacks to select the congestion-
optimal choices that preserve the delay-optimality of the solution.
The experimental results on ISCAS’85 benchmarks prove the ef-
ficiency of the algorithm, as they show, on an average, 44% im-
provement in the track overflow as compared to the conventional
mapping. We believe that these results may be further improved
by applying the placement legalization instead of the full-scale re-
placement for the mapped netlists, since it may preserve thegains
obtained during the technology mapping. Nonetheless, the impres-
sive gains in the track overflow emphasize the ability of the tech-
nology mapping to reduce the routing congestion. The proposed
matching and covering techniques are sufficiently general and can
be applied to optimize different cost functions defined on conges-
tion maps as well as different physical properties, which can be
captured employing two-dimensional maps, such as power-density
maps.
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