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Abstract

With technology scaling, the trend for high performance integrated circuits is towards

ever higher operating frequency, lower power supply voltages and higher power dissipation.

This causes a dramatic increase in the currents being delivered through the on-chip power

grid and is recognized in the 2001 International Technology Roadmap for Semiconductors as

one of the difficult challenges. The addition of decoupling capacitances (decaps) is arguably

the most powerful degree of freedom that a designer has for power-grid noise abatement and

is becoming more important as technology scales. In this paper, we propose and demonstrate

an algorithm for the automated placement and sizing of decaps in ASIC-like circuits. The

problem is formulated as one of nonlinear optimization and is solved using a sensitivity-based

QP solver. The adjoint sensitivity method is applied to calculate the first-order sensitivities.

We propose a fast convolution technique based on piecewise linear (PWL) compressions of

the original and adjoint waveforms. Experimental results show that power grid noise can be

significantly reduced after a judicious optimization of decap placement, with little change in

the total chip area.

This work was supported in part by the NSF under contract CCR-0098117 and by the SRC under grant 99-TJ-714.
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I. Introduction

A. Motivation

Modern designs are very sensitive to noise due to the lowering of supply voltages and

the presence of a larger number of potential noise generators that eat significantly into the

noise margins built into a design. The power grid, which provides the Vdd and ground

signals throughout the chips, is one of the most important sources of noise, since supply

voltage variations can lead not only to problems related to spurious transitions in some

cases, particularly when dynamic logic is used, but also to delay variations [3] and timing

unpredictability. Even if a reliable supply is provided at an input pin of a chip, it can

deteriorate significantly within the chip due to the fact that the conductors that transmit

these signals throughout the chip are electrically imperfect.

A powerful technique for overcoming this problem is through the use of on-chip decou-

pling capacitors (decaps) that are intentionally attached to the power grid. To exemplify

the role of decaps, let us consider the circuit shown in Fig. 1, which can be thought of as a

canonical model of a power grid and loading circuit. In the figure, Gg models the grid con-

ductance, Gd and Cd model a decoupling capacitance, and Iload models the time-dependent

current waveform of the load, which we model for simplicity as:

Iload =



































0 : t < 0

µt : t < tp

µ(2tp − t) : t < 2tp

0 : t > 2tp

(1)

where µ is the load current slope (unit: amps/sec) and tp (unit: sec) is the time point

when the current reaches its peak. We will use data from the 2001 International Technology

Roadmap for Semiconductors [17], summarized in Table I, to predict the dependence of the

load voltage Vload on the various circuit parameters in order to predict trends in power-grid-
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Year Leff f Vdd Size Power Density
nm MHz V mm2 W W/mm2

2001 65 1684 1.1 310 130 0.42
2002 53 2317 1.0 310 140 0.45
2003 45 3088 1.0 310 150 0.48
2004 37 3990 1.0 310 160 0.52
2005 32 5173 0.9 310 170 0.55
2006 28 5631 0.9 310 180 0.58
2007 25 6739 0.7 310 190 0.61

TABLE I

IC technology parameters.

t

i
Vload

Iload

VDD = 1
Gd

Cd

Gg

µ

Fig. 1. A canonical and approximate circuit representation of a power network.

induced noise with technology scaling. The table shows the projected yearly trends for the

effective length Leff , of a transistor, the circuit frequency, f , the supply voltage level, Vdd,

the chip size, the maximum power dissipation, P , and the density of power dissipation per

unit area, P2.

For the circuit shown in Fig. 1, we observe that Vload normalized by the voltage supply

Vdd over the time interval from t = 0 to t = tp can be expressed as:

Vload = 1−
µ

Gg

(

t−
Cd

Gg

(1− e−t/τ )

)

(2)

where

τ =
(Gg +Gd)Cd

GgGd

(3)

The minimum Vload, or maximum normalized power-supply-induced noise occurs at t = tp
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and the magnitude of the noise is:

Vmax =
µ

Gg

(

tp −
Cd

Gg

(1− e−tp/τ )

)

(4)

We note that tp ∝ f−1, and that power density (the last column in Table I, defined

as power per unit area) P2 ∝ Vddµtp, implying that µ ∝ P2f/Vdd. Based on the trends

in Table I, f increases by 4.0X through the table, and µ increases by 9.13X. In order to

keep Vmax the same (i.e., keep the same amount of noise as a percentage of Vdd), we need to

dramatically increase the last term in Eq. (4): Cd

Gg
(1− e−tp/τ ). This means:

• Increasing the decoupling capacitance Cd, which can be done at the cost of small

additional area, because the area efficiency of decoupling capacitance is expected to

increase as the gate oxide is scaled.

• Increasing the conductance associated with the decoupling capacitance Gd, which can

be done by placing the capacitance closer to the load.

• Increasing the grid conductance Gg, which will be the most difficult to do because

it goes somewhat against the prevailing scaling of interconnect, and the increased

restrictions due to the consequent wire congestion emanating from this.

Unless we are able to do all of the above, it is likely that we will find the relative magnitude

of power-grid-induced noise more than doubling by 2007.

The first two of these conclusions point a convincing finger towards the use of appro-

priately placed decaps for power grid noise reduction. While the use of decaps is certainly

not new1, the complexity of the problem requires shrewd optimal strategies driven by CAD

tools, particularly in standard-cell environments in designs that require quick turn-around

times in the face of strong time-to-market pressures.
1 For example, in a 300MHz CMOS RISC Microprocessor design [5], as much as 160nF of on-chip decou-
pling capacitance is added to control power-supply noise. In another example [10], the on-chip decoupling
capacitance is sized at ten times that of the total active circuit switching capacitance.
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decap cell

Fig. 2. One row of cells in a standard cell layout showing decap locations.

Previous work [2], [6], [20] on decap allocation and optimization has focused on appli-

cation in full custom design styles. A decap optimization procedure involving an iterative

process of circuit simulation and floor planning is proposed in [6]. A linear programming

technique is applied in [20] for allocation of white space for decap use and a heuristic is

proposed to insert additional white space into an existing floorplan. Both [2] and [18] pro-

pose a sensitivity-based method of placing or optimizing decaps for reducing the noise, or

voltage drop, in the power distribution network; the former method handles the problem in

the frequency domain, and the latter in the time domain.

B. Overview of our approach

In this work, we investigate the decap optimization and placement issue in the context

of row-based standard-cell design typical of Application Specific Integrated Circuits (ASIC)

where each row has a fixed height. A reasonable hierarchical ASIC design flow develops de-

signs for each functional block, which are then assembled at the chip level. It is important to

ensure that the design of each such block incorporates the requirements of decap positioning

for two reasons:

• The total area required by the decaps can be significant, and neglecting this can

result in incorrect estimates of the block dimensions. An alternative could be to

leave a certain percentage of the area of each block for decap insertion; however, this

percentage is hard to arrive at, and the precise locations that should be left open for

decap insertion is difficult to decide a priori.
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• If the decision of decaps positioning is postponed until the entire layout is complete

and the global power grid is designed, the amount of flexibility for decap positioning

is limited. Consequently, the placed locations are likely to be suboptimal since decaps

may have to be positioned far away from the points at which they are needed, which

negates their strong ability to locally suppress power grid noise.

Therefore, we propose a design procedure for each functional block that uses a coarse global

power grid model, described in Section II(A) along with the internal power grid routing, and

finds an optimal allocation of decaps to control the voltage drop in that block. Once these

blocks have been designed and placed into the overall power grid, an upper-level power grid

optimization or decap allocation technique can be applied to optimize the global power grid.

Our work focuses on the former problem and does not address the latter.

For a standard cell ASIC design, we consider a functional block inside a chip composed

of N rows, with the ith row having Mi cells. Each of the N rows is filled by cells to some

level of ratio ri(≤ 100%). Decoupling capacitors can be placed in the empty space, which

forms the (1− ri) fraction of each row. One such row is illustrated in Fig. 2.

Our approach is designed to be applicable subsequent to the placement phase for the

design of a functional block, where cells have already been assigned to rows. Since placement

is designed to optimally place cells in order to achieve compactness for the layout and to

control the wire length, timing and congestion, we use that result as the starting point

for decap optimization, and perturb that solution in a minimal way in solving the decap

placement problem. Because of this minimal perturbation, the succeeding routing results are

expected to be affected only slightly. Further more, timing driven placement will typically

cram all the fastest cells together, which could potentially cause larger noise in power grid,

a post-placement decap allocation to reduce noise becomes necessary.
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Specifically, we propose to use the empty spaces that may be available within each row

(when ri < 1) to place decaps. In doing so, the exact position of each cell in that row is

considered to be flexible although the order and the relative positions are fixed. Different

placement of cells can lead to different widths and location of decaps, and consequently

different impacts on the power supply noise, and the problem that we wish to tackle is that

of finding the optimal cell placement which results in the minimization of a metric for the

power supply noise. Note that since typical values of ri are close to 1, the major attributes

of the original cell placement will be, for the most part, unaffected by our procedure.

The contributions of this work are as follows:

• We propose a nonlinear programming based decap optimization scheme for individual

function blocks in standard-cell designs. The approach is performed after placement

and has a minimal impact on the routing requirements.

• As a part of this procedure, we must calculate the sensitivities of a voltage drop met-

ric using the adjoint network method. The direct application of this method results

in very large amounts of data to be stored and convolved to calculate adjoint sensi-

tivities, which leads to slow runtime as well as large memory usage. We develop an

efficient and fast convolution technique based on piecewise linear (PWL) compressions

of waveforms.

II. Power supply noise metric and its sensitivity analysis

A. Modeling and analysis

For the ASIC row-based standard-cell design style outlined above, it is common to use

a predefined mesh-like power distribution network. As in [6] and [7], we model the network

as follows:

• The power distribution network (grid) is abstracted as a resistive mesh.
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• The cells are modeled as time-varying current sources connected between power and

ground. Each current source waveform is obtained from other tools that determine

the worst-case input patterns. Various work on worst-case current estimations can be

found in [1], [12], [13], etc.

• The decoupling capacitors are modeled as single lumped capacitors connected between

power and ground.

• The top-level metal is connected to a package modeled as an inductance connected to

an ideal constant voltage source.

The behavior of such a circuit is described by a first order differential equation formulates

using modified nodal analysis (MNA) [16]:

Gx(t) + Cẋ(t) = u(t) (5)

where x is a vector of node voltages and source and inductor currents; G is the conductance

matrix; C includes both the decoupling capacitance and package inductance terms, and u(t)

includes the loads and voltage sources.

By applying the Backward Euler integration formula [16] to Eq. (5), we have:

(G+ C/h)x(t+ h) = u(t+ h) + x(t)C/h (6)

Where h is the time step for the transient analysis. If h is kept constant, only a single initial

factorization of the matrix G+C/h is required (as is done in [15], [19]) leading to an efficient

algorithm for transient analysis where each time step requires only a forward/backward

solution step. After the transient analysis of the circuit, the voltage waveform at every node

is known. Given that the treatment for nodes on the ground grid is completely symmetric,

we restrict our discussion to the Vdd nodes for which we formally define the drop at node n

to be simply Vdd − Vn(t), where Vn(.) signifies the voltage at node n.
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Vdd

90%Vdd

Vj(t, p)

Fig. 3. Illustration of the voltage drop at a given node in the Vdd power grid. The area of the shaded region
corresponds to the integral z at that node.

An efficient metric to estimate power-grid-induced noise at a node is the integral of the

voltage drop below a user specified noise ceiling [8]:

zj(p) =
∫ T

0

max{NMH − vj(t, p), 0}dt

=
∫ te

ts
{NMH − vj(t, p)}dt, (7)

where p represents the tunable circuit parameters which, in our case, are the widths of the

decoupling capacitors2. The voltage drop integral beyond the expressed by Eq. (7) represents

the shaded area in Fig. 3. We define the measure of goodness for the whole circuit as the

sum of the individual node metrics:

Z =
K
∑

j=1

zj(p), (8)

where K is the number of nodes. This metric penalizes more harshly transients that exceed

the imposed noise ceiling by a large amount for a long time, and has empirically been seen

to be more effective in practice than one that penalizes merely the maximum noise violation.

Intuitively, this can be explained by the fact the the metric incorporates, in a sense, both

the voltage and time axes together, as well as spatial considerations through the summation

over all nodes in the circuit.
2 We choose the width since the height of the decoupling capacitors is constrained to be the same as the
height of the functional cells in the same row, as illustrated in Fig. 2.
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B. Integral sensitivity computation

Adjoint sensitivity analysis is a standard technique for circuit optimization where the

sensitivity of one performance function with respect to many parameter values is required [9],

[11], [16]. For our problem, the use of this method is a natural choice since we are interested

in the sensitivity of the scalar objective function (Eq. (8)) with respect to the widths of all

decaps in the network.

An adjoint network with the same topology as the original network is constructed, with

all of the voltage sources in the original network shorted and current sources open. For noise

functions of the form given in Eq. (7), the adjoint network will include a current source of

value −u(t− ts) + u(t− te) applied at node j if zj 6= 0. We set the initial conditions to the

adjoint circuit to zero and analyze it backward in time. We use the same time step h as

the original circuit, thus allowing us to reuse the previously computed LU factorization for

(G + C/h)−1. Consequently, the extra simulation cost is reduced to one forward/backward

solve for each time step of the adjoint circuit. Obviously, a smaller time step results in

a higher accuracy for both the original and adjoint waveforms, and consequently higher

accuracy in the sensitivities at the expense of a longer runtime. We find that in order

to insure the accuracy of adjoint sensitivities, using 500-1000 steps per clock cycle (i.e.

h = 0.002Tperiod or 0.001Tperiod) is sufficient.

The sensitivity of the objective function with respect to all of the decoupling capacitors

in the circuit can be computed from the following convolution [9], [11]:

∂Z

∂C
=
∫ T

0

ψC(T − t)v̇C(t)dt, (9)

where ψC(τ) is the waveform across the capacitor C in the adjoint circuit.
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C. Improving the efficiency of adjoint sensitivity calculation

In our context, we cannot use the above adjoint sensitivity approach directly, and must

tailor it to control the storage required by the direct application of this method and speedup

the convolution calculation shown in Eq. (9). Specifically, a significant complication arises in

the case of very large networks where the total amount of data to be stored is proportional

to the number of nodes multiplied by the number of time steps, and could reach 109 bytes

or more for large networks with millions of nodes3. In order to alleviate the problem, we

store the waveforms of the original and adjoint network using a compressed piecewise linear

form. This results in a situation of the type illustrated in Fig. 4, where the time points on

the original and adjoint waveforms are not aligned. However, since we know that waveforms

t0

NM

T

x
x

x x

xx

x

x

p

x

x x

x
x x

vC(t)

a+ bt

q
ψC(τ)

g + kτ
τ

Fig. 4. Compressed piecewise-linear waveforms for the original and adjoint networks.

are divided by linear segments, the convolution (Eq. (9)) of the waveforms ψC(τ) = g + kτ

and vC(t) = a+ bt over the time interval [p, q] can be expressed as:

∫ q

p
(g + k(T − t))

d(a+ bt)

dt
dt

3 Even though in our problem total number of nodes is in the order of thousands and memory will not
be an issue, the speedup of adjoint sensitivity calculation shown in our experiments is significant with very
small accuracy tradeoff.
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=
∫ q

p
(g + k(T − t)) b dt

= b(q − p)
(

g − kT − k
[

q − p

2

])

(10)

The complexity of the convolution calculation over [0, T ] is O(N +M), where N and M

are the number of linear segments on the original and adjoint waveforms.

Once the sensitivities of Z with respect to all of the decoupling capacitor values are

computed, the sensitivities to the width of each capacitor can be calculated using the chain

rule, as in [18]:

∂Z

∂w
=
∂Z

∂C
×
∂C

∂w
(11)

Given that we calculate the decoupling capacitance from:

C =
εox
Tox

× w × h, (12)

where Tox and εox are the thickness and permittivity of the gate oxide, and h is the fixed

height of the decap, it is easily verified that Eq. (11) becomes:

∂Z

∂w
=
∂Z

∂C
×
εox
Tox

× h (13)

III. Optimization and placement

A. Problem formulation

The problem of decoupling capacitor optimization is now formulated as:

Minimize Z(wj) j = 1 · · ·Ndecap

Subject to
∑

k∈rowi
wk ≤ (1− ri)Wchip i = 1 · · ·Nrow

and 0 ≤ wj ≤ wmax j = 1 · · ·Ndecap

The scalar objective Z, defined in Eq. (8), is a function of all of the decap widths and

Ndecap is the total number of decaps in the chip. The first constraint states that the total
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decap cell

Fig. 5. Illustration of the initial equal distribution of decaps.

decap width in a row cannot exceed the total amount of empty space in that row, and Wchip

and Nrow denote, respectively, the width of the chip and the number of rows in the chip.

The second constraint restricts the decap widths within a realistic range. An upper bound

wmax for a cell in row i is easily seen to be (1− ri)Wchip, which is the largest empty space in

row i; while the lower bound of each decap width is zero.

Eq. (14) represents a linearly constrained nonlinear optimization problem. The objective

function Z can be obtained after the transient analysis of the power grid circuit, and its

sensitivity with respect to all of the variables wj can be calculated using the adjoint method

discussed in Section II(B). We choose to use a standard quadratic programming (QP) solver

[21] for solving large nonlinear optimization problems. We start the optimization with an

initial guess that uniformly distributes the vacant space in each row to each decoupling

capacitor in each row, as illustrated in Fig. 5. It can be seen that initially there is one decap

next to each cell. The initial chip width is chosen to be the maximum width occupied by

cells and decaps among all rows.

Since the QP solver [21] solves large unconstrained nonlinear optimization problems

with simple bounds (lower and upper bounds on the variables), we apply the Lagrangian

relaxation technique [4] which adds constraint functions into the objective function. For each

row i, the nonnegative relaxation variable Si is chosen such that

φi =
∑

k∈rowi

wk − (1− ri)Wchip + S
2

i = 0, i = 1 · · ·Nrow, (14)
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where Si is bounded within a small range (say, Wchip/10) which allows little change of total

decap area within every row i. By further introducing Lagrangian variables λi for each row,

the new objective function becomes

f = Z +
∑

i

λiφi, (15)

where λi is unbounded ([21] can handle unbounded variables). Theoretically function f has

the same minimum as the original objective function Z [14] and the new problem size is

Ndecap + 2Nrow.

B. Optimization and placement scheme

The optimization procedure invokes the QP optimizer, and the set of steps that are

repeated during each iteration of the optimizer can be summarized as follows:

1. Perform the transient simulation of the original power grid circuit and store piecewise

linear waveforms of all decaps.

2. Check all nodal voltages for those that fall below the noise margin, identify hot spots

and compute the objective function Z.

3. Set up the sources corresponding to these failure nodes for the adjoint circuit.

4. Perform the transient simulation of the adjoint circuit and store piecewise linear

waveforms of all decaps.

5. Compute the sensitivities ∂Z
∂Cj

by convolution and use the chain rule to obtain ∂Z
∂wj
.

6. Compute the constraint function and its Jacobian.

7. Feed all of the information into a QP solver and update the vector of widths, ~w,

according to the values returned by the solver.

8. According to the updated ~w, reposition all of the cells and decaps in the row from

left to right.
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C. Extensions

With only slight changes to the original problem formulation, our method can be ex-

tended to handle i) a special case with cell alignment restrictions and ii) a general non-

standard cell placement case.

C.1 Cell placement with vertical alignment restrictions

Row-based placement often gives vertical alignment for critical cells that require either

sets of cells to be aligned in terms of their left edges or right edges. We denote the lower

coordinate of a cell or a decap by Xlow and its higher coordinate by Xhigh. Since Xlow [Xhigh]

of a cell is the same as Xhigh [Xlow] of the decap to its left [right], so that it is sufficient to

use the decap coordinates only.

Given two cells i and j, the vertical alignment restriction on their x coordinates can

be directly translated to the restrictions on the two decaps adjacent to them. Assume S1

and S2 are the sets of decaps with alignment restrictions on Xlow and Xhigh respectively.

By changing the decision variables in the previous formulation to the lower and higher

coordinates of the decaps, the problem of optimization with vertical alignment cells can be

stated as a constrained NLP as follows:

Minimize Z(Xlow,j , Xhigh,j) j = 1 · · ·Ndecap

Subject to
∑

k∈rowi
(Xhigh,k −Xlow,k) ≤ (1− ri)Wchip i = 1 · · ·Nrow

Xhigh,m = Xhigh,n m,n ∈ S1

Xlow,p = Xlow,q p, q ∈ S2

0 ≤ Xhigh,j −Xlow,j ≤ wmax j = 1 · · ·Ndecap

and 0 ≤ Xhigh,j , Xlow,j ≤ Wchip j = 1 · · ·Ndecap
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Fig. 7. Horizontal constraint graph of the placement shown in Fig. 6.

C.2 Non-standard cell placement

Given a general layout shown in Fig. 6, a simple extension of our algorithm is to heuris-

tically divide the problem into two NLP problems, one optimizing in the vertical direction

only and the other in the horizontal direction. The decision variables for the NLP in the

vertical direction are the heights of each decap, while the decision variables for the horizontal

problem are the widths of each decap.

The overall scheme can be iteratively performed as follows:

1. Construct the horizontal and vertical constraint graph according to the given initial

placement, as in [6], [20]. In a constraint graph, a node represent a decap or a cell.

The weight of each node in the horizontal/vertical constraint graph is assigned to be
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the width/height of the cell or decap. The horizontal constraint graph of Fig. 6 is

shown in Fig. 7.

2. Derive constraints on the amount of empty space in theX direction from every path in

the horizontal constraint graph. For example, in Fig. 7, the constraint corresponding

to path (S → 4→ 5→ 9→ 10→ 11→ T ) is w4 + w9 + w11 <= Wchip − (w5 + w10),

where Wchip is the chip width and w5 and w10 are constants. Using QP solver, solve

the horizontal constrained NLP problem with respect to decap widths, ~w.

3. According to the updated ~w, reposition all of the cells and decaps.

4. Derive constraints on the amount of empty space in the Y direction from every path

in the vertical constraint graph. Using QP solver, solve the vertical constrained NLP

problem with respect to decap heights, ~h.

5. According to the updated ~h, reposition all of the cells and decaps.

The iteration stops when no more improvement for the power grid noise can be achieved.

IV. Experimental results

The proposed decap optimization and placement scheme has been integrated into a linear

circuit simulator written in C++ and the QP solver is applied. All experimental results are

performed on a 1.8GHz Pentium IV machine under the Redhat Linux operating system. We

work on three functional blocks in an industrial ASIC design, which are referred to as Block1,

Block2 and Block3 Each of them is a 0.18µm CMOS design operating under a supply voltage

of 1.8V .

We first look at the performance of our piecewise linear waveform compression technique

in Table II. For each functional block, the total number of decaps are listed in column 2.

In column 3, ε is defined as an upper bound for the voltage difference between the actual

simulated value and the one approximated by the piecewise linear equation. When the
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Blk Num of ε memory CPU time avg sens Z∗

decaps (V ) (MB) (sec) err% err%
1 1964 0.0 60.7 0.66 0 0

10−6 14.3 0.17 0.37 0.00118
2 3288 0.0 85.9 1.10 0 0

10−6 19.8 0.30 4.6e-3 0.00007
3 3664 0.0 93.0 1.25 0 0

10−6 21.0 0.36 0.20 0.00023
∗Z is sum of noise integrals.

TABLE II

Waveform compression results.

difference exceeds ε(V ), one breakpoint of the waveform is stored, otherwise the point is

removed. When ε is zero, the waveform at every time step is stored and the sensitivity result

is the most accurate. Columns 4 and 5 show the total memory and CPU time used during

the waveforms convolution. Column 6 shows the average percentage error of the calculated

sensitivities with respect to the accurate values among all decaps in the block. The last

column shows the percentage error of sum of noise integrals, Z, which is the objective

function of our optimization problem. It can be seen that the memory and CPU time

reduction are each around 4x in all cases, the loss of accuracy in sensitivity is within 0.4%

by average and the loss of accuracy in Z is within 0.002% which is negligible.

ε memory CPU time avg sens Z∗

(V ) (MB) (sec) err% err%
0.0 60.7 0.66 0 0
10−6 14.3 0.17 0.37 0.0012
10−5 13.9 0.16 1.12 0.0503
10−4 13.4 0.14 2.66 1.1390
10−3 13.2 0.13 3.14 12.385
10−2 13.1 0.13 10.4 16.301

∗Z is sum of noise integrals.

TABLE III

Performance tradeoff versus the value of ε.

Table III shows the performance tradeoff for various ε values for Block 1. The data

show a slightly greater memory and CPU time reduction as ε increases, while the average
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percentage error of sensitivity goes to around 10% and the percentage error of Z goes to

around 16%. In the following experiments, we choose ε as 10−6(V ).

Num Num ∆Vmax Z∗ Num Num Problem Num CPU
Block bad of (V× of of of valid time

nodes nodes (V ) ns) rows decaps size decaps (min)
1 Before 105 974 0.193 0.121 53 1964 2070 1964 0.90

After 0 0.176 0.000
2 Before 80 861 0.230 0.366 85 3288 3458 2240 15.2

After 63 0.196 0.063
3 Before 100 828 0.222 0.649 132 3664 3928 3430 12.5

After 70 0.201 0.200

Before = Before optimization; After = After optimization
∗Z is sum of noise integrals.

TABLE IV

Optimization results.

Table IV lists the decap optimization results for the three functional blocks. The occu-

pancy ratio ri for each row of these blocks is around 80%. Initially, decaps are uniformly

distributed across each row between each cell, so that the number of cells is roughly equal

to the number of decaps. The results in the table before optimization therefore correspond

to this uniform distribution of decaps. In Table IV, the second column shows the number

of nodes with noise violations (i.e., nodes j with a nonzero value of zj) before and after

optimization; the total number of nodes in the power grid are shown in the third column.

Although the power grid size of each block is not large, as discussed in Section I(B), we

emphasize that our problem addresses a hierarchical design style in which the whole chip is

divided into smaller functional blocks, and the decap optimization of each block is performed

individually to fully exploit the localized nature of the noise suppression effect of decaps.

The next two columns compare the worst-case voltage drop and the sum of integral area Z

(i.e., the original objective function) before and after optimization. Of the three examples,

the worst-case (block 3) noise (Z) reduction is around one-third of the initial value, which

corresponds to the uniform distribution of decaps. The significant change in the value of Z
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before and after optimization further supports our earlier claim of the strong local effects of

the decaps and the need for a hierarchical design methodology in which decaps are inserted

into functional blocks during design rather than as an afterthought. Column 6 shows the

total number of rows in the block. The total number of decoupling capacitors placed in the

whole block is listed in column 7. Column 8 shows the problem size (Ndecap + 2Nrow) for

the Lagrangian form discussed in Section III(A). We set the lower bound of each decap as

zero for the optimization because one can imagine that near some cells the voltage drop is so

small that no decap is required. The decap widths returned by the optimizer is continuous

between zero and the upper bound. The actual manufactured decaps are restricted to the

smallest transistor size, which, in our experiments, is assumed to be 0.36µm (2λ). We define

a valid decap as one whose width is larger than 0.36µm. Total number of valid decaps after

optimization are listed in column 9 of the table. We have verified that after the removal of

all of the tiny decaps (i.e., those whose widths are less than a threshold), the total power

grid noise Z and the maximum voltage drop of each circuit remain unchanged. Finally, the

last column lists the total amount of CPU time to run each example. For each of these

three blocks, the worst case voltage drops and sum of the integral areas are both reduced

successfully.

It should be noted that decap placement is not the only method for noise reduction,

and that other techniques such as wire widening, or increasing the density of the power grid,

can be applied to further improve the power grid performance. Therefore, these results that

holistically reduce the degree of noise violation by decap placement correspond to a first

step in power grid optimization, and can be supplemented by other techniques to obtain

a solution that satisfies the noise constraints imposed on the design as the global grid is

designed.
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Fig. 8. Voltage drop contour on the V dd plane
before optimization.

Fig. 9. Voltage drop contour on the V dd plane
after optimization.

Fig. 10. Voltage drop contour on the ground plane
before optimization.

Fig. 11. Voltage drop contour on the ground plane
after optimization.

The Vdd and ground contour of block2 is shown in Fig. 8 and Fig. 10. The small ovals

in each figure represent VDD or GND c4 locations. In both figures, each gray-scaled color

corresponds a voltage drop range and the number written in each color sample shows the

lowest voltage drop in that range. Darker colors mean larger voltage drops. It can be seen

that the voltage range in the Vdd plane is 1.610 − 1.8V and the hot spot is located on the

right side of the block. Similarly, the voltage range in the ground plane is 0 − 0.230V , and

the hot spot is located on the left side of the block. The result of the optimal cell and decap

placement for block2 is shown in Fig. 12. We observe that this placement is consistent with
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Fig. 12. Results of the decap placement algorithm on block2. The dark regions represent the standard cells,
and the light regions are the decaps.
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Fig. 13. Variation of the noise metric with the occupancy ratio (block2).

the hot spots of the block, i.e., larger decaps are allocated closer to the two sides of the

block. After optimization, the voltage drop in the Vdd plane is in the range of 0 − 0.196V

and that of the ground plane is in the range of 0 − 0.191V . The optimization process has

judiciously balanced the power grid voltage drop on the whole block. For comparison, Fig. 9

and 11 show the voltage contour for each plane after optimization.

The noise reduction trend with respect to the cell occupancy ratio ri for block2 is shown
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graphically in Fig. 13. This experiment is performed by removing some cells from each row

of the block to achieve the desired occupancy ratio. For each case, around 10 percent of

the total grid nodes are beyond the noise margin. A block with lower occupancy ratios

provides more empty space for decoupling capacitors and consequently is easier to optimize.

Therefore, in Fig. 13, the noise reduction is more efficient for cases with lower occupancy

ratios than for those with higher ones.

Num Num Block Tile Total Change% Max Change%
Block of of size wire of wire wire of max wire

cells nets (µm× µm) num length(µm) length density density
1 Before 1964 2553 818x648 18x34 3009338 0.991

After 3011272 +0.06 1.000 +0.91
2 Before 3288 5255 1340x1048 29x55 9165767 0.842

After 8944180 -2.42 0.847 +0.59
3 Before 3664 7256 795x1644 46x33 12992807 0.984

After 13166525 +1.34 0.996 +1.22

TABLE V

Routing performance before and after decap optimization.

Our decap optimization slightly perturbs the original timing driven placement, and there-

fore it is necessary to see how much the routing performance can be affected. To test this, we

performed global routing for each block before and after optimization. In the global router,

the entire block region is divided into small tiles and the wire density on a tile boundary

is defined as the ratio between total number of wires across the boundary and its wiring

capacity. In Table V total number of cells and nets are listed in columns 3 and 4. The

block size and total number of tiles used for global routing are provided in columns 5 and 6.

After global routing, the total wire length (in terms of Manhattan distance) and maximum

wire density among all tile boundaries are shown in column 7 and 9. As is seen from the

percentage change in the total wire length (column 8) and the change of maximum wire

density (column 10) in Table V, the routing performance is only slightly affected and is not

always worsened. The experiments in Table V correspond to a maximum decap occupancy
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ratio of 80%, and perturbing placements to allow larger decap occupancy ratios could cause

larger changes in the routing results.

V. Conclusion

This paper has presented an on-chip decoupling capacitor sizing and placement scheme

aimed at making the best use of empty spaces in the row-based standard-cell design of ASICs.

The problem of decap insertion and placement has been motivated for current and future

technologies, and the problem has been formulated as a constrained nonlinear optimization

problem that is successfully solved using the gradient-based QP solver. For a pre-designed

power distribution network, the location and size of each decap is updated iteratively such

that the total transient noise in the power grid is minimized, and the technique is demon-

strated on several industrial designs.
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