
Speeding up Pipelined Circuits through a Combination of Gate
Sizing and Clock Skew Optimization

Harsha Sathyamurthy Sachin S. Sapatnekar John P. Fishburn

Abstract

An algorithm for unifying the techniques of gate sizing and clock skew optimization for acyclic
pipelines is presented in this paper. In the design of circuits under very tight timing speci�cations,
the area overhead of gate sizing can be considerable. The procedure described herein utilizes the idea
of cycle-borrowing using clock skew optimization to relax the stringency of the timing speci�cation
on the critical stages of the pipeline. The theoretical basis for the procedure is developed, a new
algorithm for timing analysis of acyclic pipeline circuits with deliberate skew is presented, and
a sensitivity-based optimizer is used to solve the sizing+skew problem. Our experimental results
verify that the procedure of cycle-borrowing using sizing+skew results in a better overall area-delay
tradeo� as compared to using sizing alone.

1 Introduction

The problem of optimizing acyclic pipelines has attracted considerable interest of late; recent
publications on the subject include [1, 2]. This paper presents a method for speeding up acyclic
pipelined circuits through a combination of two techniques: gate sizing and clock skew optimization.
Each of these techniques has been utilized in isolation for speeding up circuits; here, we present
a method of unifying them to arrive at an optimal design. We begin with a brief introduction to
each of these techniques.

1.1 Gate Sizing

The technique of gate sizing is well-known and several computer-aided design (CAD) tools (for
example, [3{6]) have been developed to perform this optimization. The idea behind this optimiza-
tion is simple. A typical digital integrated circuit consists of multiple stages of combinational logic
blocks that lie between ip-ops (FF's) that are clocked by system clock signals. For correct circuit
operation under a speci�ed clock period, the worst-case input-output delay of each combinational
stage must be restricted to be below a certain speci�cation. Given the circuit topology, the delay
of a combinational circuit can be controlled by varying the sizes of transistors in the circuit. In
coarse terms, if we start from a minimum-sized circuit, the circuit delay can usually be reduced
by increasing the sizes of certain gates in the circuit. Hence, making the circuit faster usually
entails the penalty of increased circuit area and power dissipation. The trade-o� involved here is,
in essence, the gate sizing problem, and for the reasons speci�ed above, it is typically applied to
one combinational stage of a circuit at a time.

The problem of gate sizing is most commonly formulated as either

minimize Area

subject to Delay � Pspec (1)

1

where Pspec is the speci�ed clock period, or

minimize P

subject to Area � Aspec (2)

where P is the clock period. In the former case, a goal period is speci�ed, which translates into
a restriction on the delay of each combinational segment, and in the latter formulation, the clock
period is minimized subject to a speci�cation, Aspec, on the area. Area is often measured as the
sum of all the transistor channel widths.

1.2 Clock Skew Optimization

To understand the problem of clock skew optimization, it is important to recognize that due to
di�erences in interconnect delays on the clock distribution network of integrated circuits, there is
typically a skew between the arrival times of clock signals at the ip-ops (FF's). One approach ([7,
8] etc.) that has been followed by several researchers is to design the clock distribution network so as
to ensure zero clock skew. An alternative approach [9,10] views clock skews as a manageable resource
rather than a liability, and manipulates clock skews to advantage by intentionally introducing skews
to improve the performance of the circuit. This process of selecting the optimal skews is the problem
of clock skew optimization.

To illustrate the bene�ts of clock skew optimization, consider the following example. In
Figure 1, if the combinational subcircuits CC1 and CC2 have delays of 6 and 14 units, respectively,
then with zero skew, the fastest allowable clock has a period of 14 units. However, if the clock
input to the FF B is skewed by -4 units relative to the other two FF's, then the circuit can run at
a clock period of 10 units.

In the rest of this paper, we will use the word \skew" to mean the relative skew, with the
reference set to the skews at the primary inputs (PI's) and primary inputs (PO's), each of which
are zero.

Combinational

 block

Combinational

 block

FF FFFF

A B C

Ck Ck Ck
CC1

CC 2

Figure 1: The advantages of nonzero clock skew.

This approach was formalized in the work by Fishburn [9] where clock skew optimization
problem was formulated as a linear program (LP). An enhancement in [10] recognizes that the LP
solution is degenerate, and proposes a method for choosing the optimal values for the nonbasic
variables using criteria that incorporate the complexity of designing the clocking network.

2

1.3 Outline of the Paper

We begin by motivating the need for using skew optimization in conjunction with sizing. In the
example circuit in Figure 1, it has been shown that a clock period of 10 units is possible using skew
optimization alone by the application applying a skew of -4 units at FF B. To achieve this period
using sizing alone would probably require a large increase in the area of subcircuit CC2. For clock
periods smaller than 10 units, the use of sizing is essential, and skew optimization alone will not
be su�cient.

The general character of the area-delay tradeo� for sizing alone (without using skew opti-
mization) is shown by the curve in Figure 2; this shows that the area increases nonlinearly with
a decrease in the delay speci�cation. For a loose delay speci�cation, the area penalty is not very
large, but for tighter speci�cations, it becomes extremely large. The use of skew optimization in
conjunction with sizing would allow CC2 to steal a part of the clock cycle for CC1, thereby allowing
it a larger timing budget and a correspondingly smaller area penalty. For example, in the �gure,
CC2 may move from position A to position B. Correspondingly, CC1 may move from position C to
position D. The nonlinearity of the area-delay tradeo� curve ensures that the area corresponding
to moving CC1 from C to D is smaller than the area savings corresponding to moving CC2 from
A to B.

B

A

D C

Delay

Area

Figure 2: Using sizing in conjunction with clock skew.

In this paper, we present an algorithm for unifying clock skew optimization and transistor
sizing. The algorithm is directed towards circuits with edge-triggered ip-ops. The solution is
arrived at in two steps:

Step 1 The circuit delay is minimized and the long path constraints satis�ed, ignoring the short
path constraints altogether.

Step 2 The short path constraint violations are resolved by padding the circuit with bu�ers as
necessary.

The above techniques are illustrated on single-phase clocked circuits containing edge-triggered ip-
ops.

It was previously thought that it was extremely hard to achieve a good solution to this
problem. In [9], this problem was shown to be a signomial programming problem, which is known
to be di�cult. To the best of of our knowledge, this is the �rst piece of work that shows that Step
1 corresponds to a convex optimization problem, which implies that it is easy to �nd a solution to
this subproblem. Therefore, if the number of short path violations in the �nal circuit is relatively

3

small, Step 2 will perturb the solution by only a small amount, and the above technique will work
well for practical circuits. In this work, we concentrate on the solution to Step 1; Step 2 can be
solved by variations of methods like [11]. Another contribution of this work is in the application of
PERT to acyclic sequential circuits to detect long path constraint violations.

The organization of this paper is as follows. Section 2 formally states the problem to be
solved, followed by an overview of the algorithm in Section 3. The procedure for detecting long
path constraint violations is described in Section 4, and an account of how delay sensitivities for
each gate are calculated is given in Section 5. The entire algorithm for Step 1 is then presented in
Section 6. Finally, experimental results and concluding remarks are provided in Sections 7 and 8,
respectively.

2 Statement of the Clock Skew Optimization Problem

2.1 Long Path and Short Path Constraints

Combinational

Subnetwork
FF i

x i

Ck

FF j

x j

Ck

Figure 3: The clock skew optimization problem.

For each ip-op pair (FFi,FFj), let xi, xj be the skews at the ip-ops FFi and FFj respectively

and d(i; j) be the delay of the combinational block between them (with d(i; j) being the minimum

delay and d(i; j) being the maximum delay). This is illustrated in Figure 3 for the clock skew
optimization problem. Let Thold be the ip-op hold time and Tsetup be the ip-op setup time.
Two types of timing errors may exist:

(1) If xj + Thold > xi + d(i; j), then when the positive clock edge arrives at FFi, the data race
ahead through the fast path, destroying the data at the input to FFj before the clock gets
there. When the clock edge �nally arrives at FFj , the wrong data are clocked through

(Figure 4). Since the data are clocked through two FF's with one clock edge, this has been
called double-clocking, or a short path violation.

(2) Analogously, zero-clocking or a long path violation can be used to designate the case
when the data reach the FFj too late relative to the next clock edge. This occurs when

xi + d(i; j) + Tsetup > xj + P , where P is the clock period (Figure 5).

4

d

clocklatch
input

latch clock

output
data

i

j

x

holdT

xoutput

(i,j)

Figure 4: Double-clocking.

T

clocklatch
input

output
latch clock

output
data

setup

i

j

x

x

d (i,j)

Figure 5: Zero-clocking.

2.2 The Clock Skew Optimization Problem

As can be seen from the previous section, to avoid long path and short path constraint violations,
the following constraints apply:

xi + d(i; j) � xj + Thold;

xi + d(i; j) + Tsetup � xj + P (3)

The clock skew problem is solved under the assumption that the delays of the combinational
segments are constant. The procedure for minimizing the clock period, P , involves the solution of
the following optimization problem:

minimize P

subject to xi + d(i; j) � xj + Thold � �;

xi + d(i; j) + Tsetup � xj + P + �

where the factor � models the uncertainty in the skews. The explanation for including this factor
is as follows: if one can guarantee that in the manufactured circuit, the skew at each FF k, x̂k,
will be within the range [xk � �=2; xk + �=2], where xk is the design value of the skew, then the
di�erence between any skews, (x̂i� x̂j) in the manufactured circuit, must be within � of the design

value of (xi � xj).

In the case where all gate delays are constant, the above optimization problem is a linear
program in the skew variables and the clock period [9]. If we consider the gate delays as functions of

the gate sizes, then d(i; j) and d(i; j) are functions of the gate sizes, and the optimization problem
is considerably more complex. We will elaborate on this in Section 3.

5

2.3 Is Clock Skew Optimization Safe?

Several procedures for building clocking networks for nonzero skew are available in the literature
[8, 12]. However, a common misconception that persists among circuit designers about changing
clock skews is that it is believed to be an \unsafe" optimization, in that a small change in the
gate/interconnect delays may cause a circuit with precariously small tolerances to malfunction.
In fact, this is not so; one can build in safety margins [9, 10] that ensure that skewing errors do
not disrupt circuit functionality. These safety margins ensure that the circuit will operate in the
presence of unintentional process-dependent skew variations. Introducing deliberate delays within
the clocking network has been a tactic that has long been used by designers [13], and this may be
adapted to build �xed-skew clock networks.

As a proof of the practicality of this concept, a pipelined data bu�er chip using the concept
of skewed clocks was designed and fabricated in [14].

In fact, it is a misconception to believe that zero skew is entirely safe. To see this, consider a
shift register consisting of register A whose output is connected to register B with no combinational
logic between the two. Even for a circuit designed for zero skew, a small unintentional positive
skew at register B will cause double-clocking, i.e., a short path constraint violation. Such problems
may be avoided by the use of these safety margins and the introduction of deliberate nonzero skew:
a small amount of deliberate positive skew at A provides an e�ective safety margin against short
path violations.

3 Formulation of the Problem

As explained in Section 1.3, the use of clock skew optimization can help in achieving faster clock
periods with lower area overheads. The combination of clock skew optimization and sizing into
a single framework was thought to be a di�cult (i.e., highly computational) problem since it was
shown to be a signomial programming problem [9]. A recent approach in [15] used linear models to
arrive at a solution, setting up the combined problem as a linear programming problem. However,
the accuracy of piecewise linear models used in that work is limited, and hence it is desirable to
investigate techniques that use the more accurate Elmore delay model [16] directly, as has been
done for the sizing problem for combinational circuits in [3{6].

The combined problem of sizing and skew optimization is formulated as:

minimize Area

subject to xi + d(i; j) + Tsetup � xj + P + � (4)

xi + d(i; j) � xj + Thold + � (5)

�Xmax � xi � Xmax (6)

where d(i; j) and d(i; j) are functions of the gate sizes in the circuit, P is the speci�ed clock period,
andXmax is the maximum allowable skew magnitude. The Area objective function is approximated
as the sum of all transistor sizes1.

The area of the clocking network is not included here for two reasons. Firstly, it is di�cult
to derive a relation between the skews and the clocking network area (however, as shown in a

1For piecewise linear delay models, this problem is a linear program in the transistor size variables and the skew
variables. It should be noted that most LP solvers require each variable to be strictly positive. In case some variables,
such as the xi's, may be negative, they can be represented as the di�erence between two positive variables [17].

6

Delay = x Delay = x

Delay = x

FFFF
1 2

FFFF
1 2

(a) (b)

Figure 6: Clock network routing considerations.

following paragraph, we may add safeguards to prevent the clocking network area from becoming
exceedingly large). Secondly, the complexity of routing the clock network is such that it is not
possible to predict whether a nonzero skew clock tree will necessarily use up more routing resources
than a zero-skew tree.

A simple model such as the sum of the skews would not work; consider, for example, the
case where FF1 and FF2 are two ip-ops that are physically adjacent in the layout of the circuit
and have the same skew. Then one may take advantage of their physical proximity by using the
same set of bu�ers may be used to generate the skew for both, as shown in Figure 6(a), rather than
wastefully adding extra bu�ers as shown in Figure 6(b).

We introduce the following mechanism to ensure that the expense of clock routing does not
run amuck. We make the observation that for large clock skew magnitudes, the clock tree is likely
to consume routing resources. Therefore, we introduce the constraint (6) to limit this expense.
This constraint may easily be incorporated into our formulation.

Under the Elmore delay model, it can be shown [3] that the gate delays are posynomial

functions2 [18] of the gate sizes. A posynomial function in y can be transformed into a convex
function in z using the mapping yi = ezi . Based on this fact, it was pointed out in [9] that
the above optimization problem is a signomial programming problem [18] and does not, in general,
correspond to a convex program. This makes it di�cult to arrive at a good solution to the problem.

If we examine each long path constraint, we note that it is of the form

d(i; j) + xi � xj � K; (7)

where d(i; j) is the maximum delay between ip-ops i and j (which is some posynomial function
of the transistor sizes), xi and xj are clock delays to the source and destination ip-ops, and
K is a constant. The left-hand side of this inequality is not a posynomial because of the negative
coe�cient of xj. If the logarithmic substitution, x = ez, were performed for each clock skew variable
x and transistor size variable w in this inequality, the result would not be a convex constraint.

However, if we perform the substitution w = ez for each transistor width w appearing in

d(i; j), while leaving xi and xj alone, then the result is a convex constraint: the left-hand side of

2A posynomial is a function g of a positive variable w 2 Rn that has the form g(w) =
P

j
j
Qn

i=1
w
�ij

i where

the exponents �ij 2 R and the coe�cients j > 0. Roughly speaking, a posynomial is a function that is similar to a

polynomial, except that (a) the coe�cients j must be positive. (b) an exponent �ij could be any real number, and
not necessarily a positive integer, unlike the case of polynomials.

7

the inequality is the sum of d(i; j), which is convex in the new z variables, and xi � xj, which is

linear (hence convex), in the variables xi and xj .

We can generalize this concept to any optimization problem (not necessarily the problem
that we are dealing with) that can be divided into two separate classes w1; � � � ; wn, and x1; � � � ; xm,
with each constraint is of the form

P (w1; :::; wn) + C(x1; :::; xm) � K; (8)

where P is a posynomial function, C is a convex function, and K is a constant. Such a problem
can be transformed into a convex program by performing the substitution wi = ezi while leaving
the xi variables alone.

All of the above statements are valid for general sequential circuits, and not just pipelined
circuits. Thus, we conclude that for general sequential circuits, the problem of adjusting both
clock skews and transistor sizes to meet long path constraints while minimizing total gate area,
corresponds to a convex optimization program.

Based on these observations, our approach to solving this problem is divided into two steps:

1. Neglect the short path constraints (which may be nonconvex [9]) and solve the combined
sizing and skew optimization under long path constraints only. This is a unimodal problem,
i.e., any local minimum is also a global minimum.

2. Resolve any short path constraints that are violated at the end of Step 1 by changing the
topology of the circuit and adding bu�ers in an optimal manner using variation of techniques
such as [11] (this is not addressed in our work).

Apart from easing the solution of the optimization problem, the above strategy has a useful side-
e�ect. Since the presence of short path constraints results in a larger value of the optimal clock
period over that achieved in the case where they are neglected, the method above will result in
better clock periods than are achievable by keeping the circuit topology the same. It is also hoped
that in practical circuits, the number of short path violations, and hence the number of bu�ers to
be added, will be small.

The approach taken to solve Step 1 is an adaptation of the TILOS algorithm [3]. Although
more exact methods such as those in [6] may be used to solve the convex programming problem
exactly, these are not practical for use in this situation since the number of variables is too large
for the exact algorithm to handle e�ciently.

The optimization approach is divided into two stages that are repeated iteratively. In the
�rst, violations of the clocking constraints must be detected. We present a modi�cation of the
PERT procedure for delay estimation, generalized to handle sequential circuits, in Section 4. Next,
a critical path is de�ned and identi�ed, and the size of the most sensitive gate on this path is
bumped up by a small amount. The iterations continue until all long path-constraints are satis�ed
for the given clock period.

4 Detection of Long-Path Constraint Violations

4.1 The \Delay" of a Flip-Flop

PERT is a method for �nding the longest/shortest path in a directed acyclic graph (DAG) that
arises out of a system of di�erence constraints. It has been used extensively for delay estimation in

8

combinational circuits. Here, we present a generalization that permits the use of the PERT method
for timing analysis of acyclic sequential circuits.

The technique for representing combinational blocks by di�erence constraints, and therefore,
by DAG's is well-known. For sequential circuits, one also has to deal with the problem of represent-
ing ip-ops. In this section, it is shown that the relationship between the input arrival time and
the output arrival time (which we will refer to as the \delay") for ip-ops can also be represented
by a di�erence constraint.

We point out here that the reference point for the arrival time in each combinational block is
the zero skew. For example, an arrival time of a at the output of a ip-op implies that the clock
signal at the ip-op has been skewed by a. If this ip-op fans out to a single inverter with a unit
delay, then the arrival time at the output of this inverter would be a+ 1. Consequently, it can be
seen that arrival times may be positive or negative. Note that this is a nonstandard de�nition of
arrival time, but we use it since it measures the actual arrival time of a signal at any gate/ip-op
output in the circuit.

For acyclic pipelines, the composite set of these and the di�erence constraints for each gate
can be represented by a DAG, on which PERT may be applied to solve the longest path problem.

Note that the word \delay," when used in reference to ip-ops, is applied in a loose sense
here. The \delay" of a ip-op as de�ned here is not the propagation delay of the gates within
the ip-op, but is a mathematical tool that can be used to apply PERT to a sequential circuit to
check for delay violations in the presence of clock skews. It will be shown that one may assign a
\delay" value to each ip-op, and this value can be used in the same manner for the ip-op as
one would use the propagation delay for a gate during a PERT analysis.

It will now be shown that in an acyclic sequential circuit, a memory element is equivalent
to a \delay" of Tsetup � P � �, where Tsetup is the setup time for the ip-op and P is the applied
clock period, and � is the uncertainty in the clock skew. This arises as a direct result of applying
clock skew optimization and the long path constraint given by (4).

FFi FFj

xi xj

(b)

G1 G2 G3

G H

d
G

dj

d
G1

d
G2

(a)

Figure 7: Modi�ed PERT.

Consider Figure 7(a). We symbolically show the path from FFi to FFj as being represented
by a single gate with delay Gmaxdelay, which corresponds to the maximum combinational delay

9

between these ip-ops. From (3) we have

xi +Gmaxdelay + Tsetup � xj + P + � (9)

where xi is the latest arrival time at the input of G, xj is the latest arrival time at the input of gate
H. Writing xi+Gmaxdelay as dG, the latest arrival time at the input of FFj , we have the following
di�erence constraint

dG + Tsetup � xj + P + �

i.e. xj � dG � Tsetup � P � � (10)

For a regular combinational gate, as shown in Figure 7(b), if dG1 and dG2 are the latest
arrival times at the input of G2 and G3, then we have the di�erence constraint

dG2 � dG1 � delay(G2) (11)

From the two di�erence constraints given above it can be seen that G2 and FFj behave analogously,
i.e., FFj behaves like a gate with a delay of Tsetup � P � �. PERT is accordingly carried out with

gates and ip-ops being assigned delays as given by (10) and (11). It is noteworthy that the circuit
will remain a DAG only when the pipeline is acyclic; if not, methods such as loop unrolling will
have to be utilized.

Physically, the di�erence constraint for the FF represents a constraint that will lead to a
calculation of the earliest time xj (relative to the clock tick) at which a signal will arrive at the
output of the FF in the presence of a skew.

As seen earlier, the value xj also represents the required skew associated with the FF. There-
fore, a violation is said to occur, if at the end of PERT, the arrival time at a primary output is
greater than zero, or if the optimal skew at any ip-op falls out of range of the constraint 6.
Notice that if the arrival time at a primary output is less than or equal to zero, it corresponds to
the existence of a nonnegative slack for the long path constraints; if the arrival time is positive, it
constitutes a constraint violation.

At this point a backtrace is performed to �nd the critical path, i.e., starting from the primary
output with the largest violation, a maximum delay path from a primary input is found. The
most sensitive gate on the critical path is identi�ed and is sized suitably in each iteration using a
procedure described in Section 5. The details of the remaining steps are described in the following
sections.

4.2 The Delay of a Gate

The method used here for modeling the delay of a gate has been used extensively and successfully in
several gate sizing algorithms, and is not original. We present a description here for completeness.
The delay of a gate can be characterized by its size and the capacitive load it drives. All transistors
of the same type (n or p) within the gate are assumed to have the same size. The delay of each gate
is calculated by replacing it by an equivalent inverter with parameters WN and WP corresponding
to the equivalent n and p transistor sizes, respectively.

Each gate is replaced by an RC tree with a driving resistance Ron and a capacitive load Cout.
The Elmore delay of the charging(discharging) network is taken to be the rise(fall) time of the
gate. As has been done in previous work on sizing, the on-resistance, Ron, is inversely proportional
to WP (WN) during the charging (discharging) transition. The capacitive load, Cout, is composed

10

of two parts: Cfanout, the fanout capacitance, and Cintr, its intrinsic capacitance. The value of
Cfanout of gate i is equal to its fanout gate capacitances and is given by

Cfanout(i) = cap(i; 1) + cap(i; 2) + � � �+ cap(i; f)

= � � (W1;N +W1;P) + � � (W2;N +W2;P) + � � �+ � � (Wf;N +Wf;P) (12)

where W1;N ;W1;P ; � � �Wf;N ;Wf;P are the sizes of the n and p transistors in the equivalent inverters
corresponding to the gates that logic gate i fans out to, and � is a constant of proportionality.

The value of Cintr of gate i is proportional to its own size and is given by

Cintr = � �Wi (13)

where Wi is the size of gate i, given by the sum of the n and p-transistor channel widths, and � is
a constant of proportionality.

We can now write the delay of a gate by the following equation [3{6]:

Delay = Ron � (Cfanout + Cintr) (14)

CELL A

CELL B

CELL C

CELL D

Figure 8: Example to show delay calculations.

For example, consider the gates in Figure 8. The rise delay of gate A is given by

�r(A) = RA
on � (Cintr + Cfanout)

=
1

WA
P

�
�
�WA + CB

in + CC
in + CD

in

�

=
1

WP
� (�WA + �WB + �WC + �WD) (15)

where WA;WB ;WC ;WD are the gate sizes given by the sum of the n and p-channel transistor
widths.

5 Sensitivity Computation

If the delay constraints cannot be satis�ed by the current set of transistor sizes, the sizes of certain
transistors in a gate are increased so as to e�ect the greatest decrease in delay with the smallest

11

increase in area. This is called the sensitivity K of the gate. The sensitivity of a gate tells us how

much its delay can be decreased if we increase its size by a unit amount. It is de�ned as �delay
�area

,

where �delay is the di�erence in the delay of the gate after the size has been bumped up, and
�area is the increase in gate area. The optimization algorithm chooses the gate with the most
negative sensitivity and bumps its size up by a �xed factor.

Since there are two delays associated with every gate, we have a fall-sensitivity Kn and a rise-
sensitivity Kp which give the behavior of the delay when the n and p-channel widths are increased.
They are given by the simple chain rule

Kn =
�delay

�WN
�
�WN

�area

Kp =
�delay

�WP
�
�WP

�area
(16)

For a 2-input nand gate with all n-transistor sizes set to wn and all p-transistor sizes set to

wp, area = 2 � wn + 2 � wp, WN = wn
2

and WP = wp therefore
�WN

�area
= 1

4
and �WP

�area
= 1

2
.

To illustrate the calculation of sensitivity, consider the chain of inverters shown along with

their output waveforms in Figure 9. In the succeeding discussion, the notation W i
N and W i

P will

denote, respectively, the n and p transistor sizes of the ith gate.

The rise delay at gate 3 is calculated as follows

�rise = R3
on(P) � C

3
out +R2

on(N) � C2
out +R1

on(P) � C
1
out +Rin � C

in
out

=
1

W 3
P

�
n
�
�
W 3

P +W 3
N

�
+ Cload

o

+
1

W 2
N

�
n
�
�
W 2

P +W 2
N

�
+ �

�
W 3

P +W 3
N

�o

+
1

W 1
P

�
n
�
�
W 1

P +W 1
N

�
+ �

�
W 2

P +W 2
N

�o

+Rin �
n
�
�
W 1

P +W 1
N

�o

1 2 3

C load

Figure 9: Chain of three inverters.

From this expression for delay the fall-sensitivity of gate 2, for example, is given by

K2

n =
�

W 1
P

�
� �W 2

P + � �
�
W 3

P +W 3
N

�
�
W 2

N

�2

Note that
�W 2

N

�area
= 1, since the primitive gate is itself an inverter. The general expression for

sensitivity and expressions for �WN

�area
and �WP

�area
for various gates can similarly be evaluated.

12

6 Unifying Transistor Sizing and Clock Skew Optimization

It has already been seen that the use of transistor sizing with clock skew optimization is an e�ective
method for reducing the clock period. In a multi-stage combinational circuit, if transistor sizing
alone were applied, then each stage would be sized individually, and the circuit speed would be
governed by the maximum delay of any combinational stage. By intentionally introducing clock
skews it can be seen that for purposes of delay analysis, the multi-stage circuit may be viewed as
a single block with ip-ops acting as modules with \delays." In the preceding sections, we have
described individual pieces of the algorithm. This section presents an overview of the algorithm.

In the delay model presented in Section 4, each gate is represented by an equivalent inverter.
The n-channel portion and the p-channel portion of each gate are sized independently of each other.
Initially, all gate sizes are set to the minimum value. The sensitivity-based algorithm performs the
following tasks in each iteration:

1. A timing analysis is carried out on the combinational circuit using PERT to identify paths
that fail to satisfy the delay constraint. A violation is said to occur if the rise/fall delay at a
PO is � 0, or if the skew at a ip-op exceeds the speci�ed maximum skew. In each case, the
delay of the path from the primary inputs to the ip-op or PO must be reduced. Starting
from the ip-op or PO with the maximum violation, a critical path is traced back from the
PO with the largest violation, to a PI. Since each gate is replaced by an equivalent inverter,
the critical path is seen as an alternating sequence of rise and fall transitions.

2. The sensitivity of each gate along the critical path is computed, and the most sensitive gate
is identi�ed, so that its sizes may be bumped up. Depending on whether the gate to be sized
is undergoing a rise (fall) transition, the p-channel (n-channel) width is bumped up.

Therefore, in each iteration, it is expected that the delay of the critical path will be reduced
by a small amount. However, the change in the size of the most sensitive transistor for the current
critical path is liable to increase the delays of other paths in the circuit, and hence, as in [3], it is
important to use a small bumpsize.

The algorithm continues until all timing requirements are met, or until the sensitivity of the
most sensitive gate in the most critical path is � 0. At this stage, any further increase in channel
widths results only in the increase in delay, and the speci�ed clock period is unachievable. The
process of calculating the optimal skews falls out as a natural consequence of this procedure: if
the timing requirements are met, then the arrival time at the output of a ip-op, as calculated by
PERT, is the optimal skew to be applied to that ip-op.

The pseudocode for the algorithm is shown below:

Read in circuit description;

Set all transistors to the minimum size;

While(TRUE) f

Perform PERT.(Flip-Flops are seen as blocks with a delay of Tsetup � P � �)

If no timing violations exist

exit. /* timing and area specification achieved */

Else f

Trace the most critical path, GPOi � � �GPIj

13

Calculate rise and fall sensitivity of each gate in the path,

If rise/fall sensitivity of most sensitive gate � 0,

exit. /* timing specification unachievable */

Else, bump n/p-channel widths.

If increase in area exceeds a limit, Areaspec,

exit. /* area specification unachievable */

g

g

Table 1: Input Circuit Description

Number Number Number Number Number of

Circuit of Gates of Stages of FF's of PI's PO's

add2y 15 1 5 3 2

inv 10y 10 1 2 1 1

r25y 30 1 10 5 5

r50y 55 1 10 5 5

r250y 265 1 30 15 15

r500y 520 1 40 20 20

mcnc 744 3 24 10 8

r 2 279 2 26 15 5

r 4 496 4 35 15 4

r 6 1370 6 78 25 10

r 10 1687 10 91 25 6

r 15 2986 15 142 25 9

r 20 4043 20 176 20 7

y single-stage pipelines

7 Experimental Results

The algorithm has been implemented in a C program, the SACS (Sizing And Clock Skew) optimizer.
Experimental results are provided on several circuits, described in Table 1. For example, r 2 is a
two-stage pipeline with a total of 279 gates, 26 ip-ops, 15 PI's and 5 PO's. The circuits marked
with a \y" are single-stage pipelines. For these circuits, the results obtained with and without clock
skew optimization must necessarily be identical since the clock skew adjustments can only be made
on multi-stage pipelines.

Experimental results on these circuits, using transistor sizing with and without clock skew
optimization, are presented in Table 2. The column labeled Pu corresponds to the clock period
of an unsized circuit where all clock skews are set to 0, and Pspec is the speci�ed clock period
to be achieved. The corresponding percentage increases in circuit area as a result of sizing are,

respectively, �nsk
area and �sk

area. The CPU times used by the program SACS for all of the circuits
are also shown; these �gures correspond to run-times on a DECstation 5000/133.

In Table 2, for both sizing with and without clock skew optimization, a bump size of 1.25
is used and no limit on the increase in area is imposed. (It may be recalled that the bump size
is the factor by which the size of the most sensitive transistor is increased in each iteration.) It

14

Table 2: Combining Clock Skew Optimization and Transistor Sizing

Circuit Pu in ns Pspec in ns �nsk
A �sk

A Tnsk Tsk
(Unsized (Timing (Area change (Area change CPU Time CPU Time
Circuit Spec.) w/ sizing w/ sizing (sizing (sizing
Period) only) + skew) only) + skew)

add2y 5.38 3.55 46.00% 0.36s 0.36s

inv 10y 5.76 4.25 55.13% 0.32s 0.32s

r25y 13.47 7.65 5.76% 0.35s 0.36s

r50y 25.12 13.05 18.34% 0.83s 0.83s

r250y 36.33 15.00 36.58% 19.37s 19.37s

r500y 48.59 30.00 3.79% 15.94s 15.94s

mcnc 77.74 18.0 - z 42.75% - 107.6s

r 2 28.95 12.0 31.09% 23.69% 15.9s 14.8s

r 4 26.31 12.0 32.68% 23.98% 45.1s 55.9s

r 6 36.11 14.0 45.88% 32.10% 482.2s 396.7s

r 10 36.40 14.0 36.22% 26.51% 618.6s 488.6s

r 15 38.76 14.0 44.71% 31.82% 2885.5s 2305.5s

r 20 40.38 14.0 38.00% 26.51% 3656.9s 2830.8s

y single-stage pipelines z speci�cation could not be achieved

can be seen that in the case where clock skew optimization has been applied, the clock periods
achieved are smaller than those achieved by not introducing clock skews. As expected, in the cases
of the single-stage pipelines, clock skew optimization cannot be applied and the results for each
case are the same. For the remaining circuits, it can be seen that wherever the speci�cation, Pspec,

is achieved by both the methods, �nsk
A > �sk

A . In other words, the increase in area is greater when
clock skew optimization is not applied. It may also be observed that the period Pspec is sometimes
unachievable using sizing alone, but is achieved by the use of skew optimization in addition to
sizing.

For example, for r 20, a 20-stage pipeline with 4043 gates, the clock period of the unsized
circuit is 40.38 ns. The speci�ed clock period is 14 ns. The increase in area due to sizing without
skew is 38%, as against about 26.5% for sizing+skew. The CPU times are seen to be similar in all
cases. For some speci�cations for the circuits (as is shown later), the clock period speci�ed here
was not achievable by transistor sizing alone, demonstrating that by unifying transistor sizing and
clock skew optimization, lower clock periods can be achieved.

Figures 10-12 indicate the improvement achieved when clock skew optimization is applied
along with transistor sizing. Not only is the increase in area less, but the clock periods are also
reduced further. For example, in Figure 12, even the best achievable clock period with sizing alone
can be achieved by sizing+skew optimization at about half the cost, and that signi�cantly lower
clock periods are also achievable at a reasonable cost.

We caution the reader not to be misled by the fact that the two curves in each �gure seem
to be very close to each other. The curves show us that for a given timing speci�cation, the area
utilized by the sizing-only solution is, as expected, always larger than that for the sizing+skew
solution. These di�erences are particularly acute when the circuit is designed for very tight timing
constraints, where we try to push the limits of the achievable circuit speed.

In Figure 13, we display a plot showing the increase in area and CPU time versus the bump
size for r 2. The bumpsize is varied between 1.01 and 15. As expected, a low bumpsize (close to,

15

0

1000

2000

3000

4000

5000

0 5 10 15 20 25 30 35 40

A
r
e
a

Clock Period (ns)

with skew opt.
no skew opt.

Figure 10: Increase in area vs. clock period for r 2.

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35

A
r
e
a

Clock Period (ns)

with skew opt.
no skew opt.

Figure 11: Increase in area vs. clock period for r 4.

but just larger than 1) provides the best quality solution, i.e., the solution with the least increase
in circuit area. However, since the number of iterations for a very small bumpsize is liable to be
large, the run-times increase greatly as the bumpsize is brought closer to 1. On the other hand,
extraordinarily large values for the bump sizes lead to a larger increase in area. In fact, beyond a
certain point, due to oversizing, high bumpsizes may actually cause the circuit delay to increase,
rather than decrease (notice that large bumpsizes may even lead to a slightly larger execution
time since a larger number of iterations may be required to achieve the speci�cation). Moderately
high bump sizes achieve the target much faster; however, the increase in area is not optimal. An
optimal bump size must, therefore, be used. Experimentally, it has been found that using a bump
size between 1.2 and 1.75 yields good results in terms of the trade-o� between the computation
time and the quality of the solution.

16

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35 40

A
r
e
a

Clock Period (ns)

with skew opt.
no skew opt.

Figure 12: Increase in area vs. clock period for r 6.

0 5 10 15
0

100

200

300

400

500

Bump size ---->

%
 in

cr
ea

se
 in

 a
re

a
--

--
>

0 5 10 15
0

10

20

30

Bump size ---->

C
P

U
 ti

m
e

in
 s

ec
on

ds
 -

--
->

Figure 13: Area and CPU time vs. bump size for r 2.

17

The results in Table 2 correspond to unbounded values of Xmax (de�ned in Equation (6)).
The e�ect of Xmax on the results for two circuits, r 4 and r 10, is shown in Table 3. The notation
used here in each column is the same as that in Table 2. As expected, it is seen that as the value
of Xmax is decreased, the amount of sizing required to achieve a clock period increases.

This table also suggests a technique for controlling the expense of the clock network. The
circuit could �rst be sized without bounding the value of Xmax. The magnitude of the largest skew
thus obtained is a rough indicator of how expensive the clock network would be. If this expense is
too large, the value of Xmax can be decreased and the optimization repeated to provide a tradeo�
between the cost of building the clock network and that of sizing the circuit.

Table 3: Results of varying Xmax

Circuit Pspec in ns Xmax �sk
A

(Timing (ns) (Area change
Spec.) w/ sizing

+ skew)

r 4 22.5 1 3.6
3.0 4.5

Unsized 1.0 5.9
Area = 0.9 6.8
2851.2 0 6.9

20.0 1 26.6
5.0 27.5
1.0 36.0
0.5 39.2
0 49.3

15.0 1 222.0
5.0 241.3
1.0 274.3
0.5 316.8
0 359.0

10.0 1 1618.1
5.0 1709.9
1.0 1890.9
0.5 1878.7
0 2407.1

r 10 20.0 1 346.7
5.0 381.1

Unsized 1.0 622.0
Area = 0.5 774.1
9748.8 0 962.2

15.0 1 1755.1
5.0 1864.4
1.0 2465.3
0.5 2803.9
0 3404.5

10.0 1 11068.4
5.0 11907.1
1.0 14150.6
0.5 18325.7
0 unachievable

18

8 Conclusion

In this paper, a new approach to speeding up pipelined circuits using a conjunction of gate sizing
and clock skew optimization has been presented. This problem was previously thought to be dif-
�cult under Elmore delays since it is a signomial programming problem [9]. We have shown that
the sizing+skew problem under long path constraints only is equivalent to a convex optimization
problem, and suggest that short path violations can be taken care of by considering each combina-
tional block separately and adding bu�ers through variants of methods such as [11]. Note that this
is a slight variation of the problem originally proposed in [9], since this involves the reconciliation
of short path violations by changing the topology of the circuit by adding bu�ers. Experimental
results validate the utility of combining the optimization methods of clock skew and sizing, and
show that the conjunction of the two methods gives substantial improvements over using gate sizing
alone.

In closing, we point to an interesting related issue, namely, the relationship between level-
clocked circuits and the application of deliberate skew. A level-clocked circuit whose clock is high
between �Thigh and 0 provides any skew between �Thigh and 0 at no cost. However, it does not

allow the application of any skew outside that range. The work in [19] provides a technique for
optimizing critical paths in level-clocked circuits.

9 Acknowledgments

The authors would like to acknowledge the anonymous reviewers for their helpful comments.

References

[1] S. Malik, K. J. Singh, R. K. Brayton, and A. Sangiovanni-Vincentelli, \Performance optimiza-
tion of pipelined circuits," in Proceedings of the IEEE International Conference on Computer-
Aided Design, pp. 410{413, 1990.

[2] N. V. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, \Resynthesis of multi-phase
pipelines," in Proceedings of the ACM/IEEE Design Automation Conference, pp. 490{496,
1993.

[3] J. Fishburn and A. Dunlop, \TILOS: A posynomial programming approach to transistor siz-
ing," in Proceedings of the IEEE International Conference on Computer-Aided Design, pp. 326{
328, 1985.

[4] D. Marple and A. E. Gamal, \Optimal selection of transistor sizes in digital VLSI circuits,"
in Stanford Conference on VLSI, pp. 151{172, 1987.

[5] J.-M. Shyu, A. L. Sangiovanni-Vincentelli, J. Fishburn, and A. Dunlop, \Optimization-based
transistor sizing," IEEE Journal of Solid-State Circuits, vol. 23, pp. 400{409, Apr. 1988.

[6] S. S. Sapatnekar, V. B. Rao, P. M. Vaidya, and S. M. Kang, \An exact solution to the
transistor sizing problem for CMOS circuits using convex optimization," IEEE Transactions
on Computer-Aided Design, vol. 12, pp. 1621{1634, Nov. 1993.

[7] M. A. B. Jackson, A. Srinivasan, and E. S. Kuh, \Clock routing for high-performance IC's,"
in Proceedings of the ACM/IEEE Design Automation Conference, pp. 573{579, 1990.

19

[8] R.-S. Tsay, \An exact zero-skew clock routing algorithm," IEEE Transactions on Computer-
Aided Design, vol. 12, pp. 242{249, Feb. 1993.

[9] J. P. Fishburn, \Clock skew optimization," IEEE Transactions on Computers, vol. 39, pp. 945{
951, July 1990.

[10] R. B. Deokar and S. S. Sapatnekar, \A graph-theoretic approach to clock skew optimization,"
in Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1.407{1.410,
1994.

[11] N. V. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, \Minimum padding to sat-
isfy short path constraints," in Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pp. 156{161, 1993.

[12] J. L. Neves and E. G. Friedman, \Circuit synthesis of clock distribution networks based on
nonzero clock skew," in Proceedings of the IEEE International Symposium on Circuits and
Systems, pp. 4.175{4.178, 1994.

[13] K. D. Wagner, \Clock system design," IEEE Design and Test of Computers, pp. 9{27, Oct.
1988.

[14] M. Heshami and B. A. Wooley, \A 250-MHz skewed-clock pipelined data bu�er," IEEE Journal
of Solid-State Circuits, vol. 31, pp. 376{383, Mar. 1996.

[15] W. Chuang, S. S. Sapatnekar, and I. N. Hajj, \A uni�ed algorithm for gate sizing and clock
skew optimization to minimize sequential circuit area," in Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, pp. 220{223, 1993.

[16] J. Rubinstein, P. Pen�eld, and M. A. Horowitz, \Signal delay in RC tree networks," IEEE
Transactions on Computer-Aided Design, vol. CAD-2, pp. 202{211, July 1983.

[17] P. E. Gill, W. Murray, and M. H. Wright, Numerical Linear Algebra and Optimization, vol. 1.
Reading, Massachusetts: Addison-Wesley, 1991.

[18] J. Ecker, \Geometric programming: methods, computations and applications," SIAM Review,
vol. 22, pp. 338{362, July 1980.

[19] T. M. Burks, K. A. Sakallah, and T. N. Mudge, \Optimization of critical paths in circuits
with level-sensitive latches," in Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pp. 468{473, 1994.

20

