Problem Session 4

Protection From Failure (Real Time) - An outage of a - Trans line
- Transformer
- Bus
- Bus

Linear Power Flow "DC Power Flow"

\[z = v + jx \]

\[X_{ij} = \text{PU \ induced \ reactance.} \]

\[P_{ij} = \frac{1}{X_{ij}} (\Theta_i - \Theta_j) \text{ [radians]} \]

100 MVA.

\[P_n = 48 \text{ Mw} \]

\[\frac{P_{pu}}{100} = 0.48 \]

\[I_{12} = \frac{(V_1 - V_2)}{R} \]
\[P_1 = P_{12} + P_{13} \]
\[P_2 = -P_{12} + P_{23} \quad \alpha = P_{21} + P_{23} \]
\[P_3 = -P_{13} - P_{23} \quad \alpha = P_{31} + P_{32} \]
\[P_{12} = -P_{21} \]
\[\frac{1}{x_{12}}(\theta_1 - \theta_2) = \frac{1}{x_{11}}(\theta_2 - \theta_1) \]
\[P_1 = P_{12} + P_{13} \]
\[P_2 = P_{21} + P_{23} \]
\[P_3 = P_{31} + P_{32} \]

3 unknowns: \(\theta_1, \theta_2, \theta_3 \)
Ref Fixed θ
θ₁ = 0

\[P_1 = P_{12} + P_{13} = \frac{1}{Y_{12}} (θ_1 - θ_2) + \frac{1}{Y_{13}} (θ_1 - θ_3) \]

\[P_2 = P_{21} + P_{23} = \frac{1}{Y_{12}} (θ_2 - θ_1) + \frac{1}{Y_{23}} (θ_2 - θ_3) \]

\[P_3 = P_{31} + P_{32} = \frac{1}{Y_{13}} (θ_3 - θ_1) + \frac{1}{Y_{23}} (θ_3 - θ_2) \]

Matrix \(B_x \)

\[
\begin{bmatrix}
1 & -\frac{1}{Y_{12}} & -\frac{1}{Y_{13}} \\
-\frac{1}{Y_{12}} & \frac{1}{Y_{12}Y_{13}} & -\frac{1}{Y_{13}} \\
-\frac{1}{Y_{13}} & -\frac{1}{Y_{23}} (\frac{1}{Y_{13}} + \frac{1}{Y_{23}})
\end{bmatrix}
\begin{bmatrix}
θ_1 \\
θ_2 \\
θ_3
\end{bmatrix} =
\begin{bmatrix}
P_1 \\
P_2 \\
P_3
\end{bmatrix}
\]

Matrix \(B_{alt} \)

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & (\frac{1}{Y_{12}} + \frac{1}{Y_{23}}) & -\frac{1}{Y_{23}} \\
0 & -\frac{1}{Y_{23}} (\frac{1}{Y_{12}} + \frac{1}{Y_{23}})
\end{bmatrix}
\begin{bmatrix}
θ_1 \\
θ_2 \\
θ_3
\end{bmatrix} =
\begin{bmatrix}
P_1 \\
P_2 \\
P_3
\end{bmatrix}
\]
A matrix Generator Shift Sensitivity

✓ PTDF Power Transfer Distribution Factors
LODF Line Outage Distribution Factors.

Ps

\[P_{\text{nm}} (\text{with Trans}) = P_{\text{nm}}^0 + \text{PTDF} \cdot P_{\text{sr}} \]
LODF

\[P_{ij}^* = P_{ij}^0 + \text{LODF} \cdot P_{nm} \]

HW4 3rd B

\[\Delta f_i = a_{ij} \Delta P_j \]
\[a_{ij} = \frac{1}{x_{ij}} \left(\frac{X_j}{X_{ij}} - \frac{X_i}{X_{ij}} \right) \]
$\begin{bmatrix} R_i \end{bmatrix} \rightarrow \begin{bmatrix} \alpha \cdot \beta \end{bmatrix} \rightarrow \begin{bmatrix} X \end{bmatrix} \quad \text{6}

X_{is} = \text{row}_i \cdot \text{col}_s \cdot X
X_{js} = \text{row}_j \cdot \text{col}_s \cdot X

PTDF = \frac{1}{S_{s,r} \cdot l} \left[\left(\bar{X}_{is} - X_{ir} \right) - \left(\bar{X}_{js} - X_{jr} \right) \right] \quad \text{level i to j}

S = \text{Source Bus}
R = \text{Receive Bus} \quad l \text{ line to } j

LODF \quad l = i \text{ to } j \quad \text{Line Monitored}
R = n, m \quad \text{Line dropped}

\text{LODF} = PTDF \left(\sum_{n, m, e} \frac{1}{1 - PTDF_{n, m, j}} \right)

\bar{f} = f^0 + \text{LODF} \cdot f^0
\quad l, R
Base Case

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
<th>x</th>
<th>1/x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.2</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.3</td>
<td>3.333333</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0.3</td>
<td>3.333333</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.3</td>
<td>3.333333</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.4</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Flow Calculation Matrix

<table>
<thead>
<tr>
<th>Bus</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>-5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3.333333</td>
<td>0</td>
<td>-3.333333</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3.333333</td>
<td>0</td>
<td>0</td>
<td>-3.333333</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3.333333</td>
<td>-3.333333</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2.5</td>
<td>-2.5</td>
</tr>
</tbody>
</table>

Bx

11.667 -5 -3.333 -3.333333
-5 8.333333 -3.333 0
-3.333 -3.333 9.1667 -2.5
-3.333 0 -2.5 5.833333

altBx

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8.333333</td>
<td>-3.333</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-3.333</td>
<td>9.1667</td>
<td>-2.5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-2.5</td>
<td>5.833333</td>
<td></td>
</tr>
</tbody>
</table>

invaltBx

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1437</td>
<td>0.0592</td>
<td>0.02535</td>
</tr>
<tr>
<td>0</td>
<td>0.0592</td>
<td>0.1479</td>
<td>0.06338</td>
</tr>
<tr>
<td>0</td>
<td>0.0254</td>
<td>0.0634</td>
<td>0.19859</td>
</tr>
</tbody>
</table>

Pnet

<table>
<thead>
<tr>
<th>Theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>-0.3</td>
</tr>
<tr>
<td>-0.3</td>
</tr>
</tbody>
</table>

flows flows MW

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
<th>flows</th>
<th>flows MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>-0.088732</td>
<td>-8.873239</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.152113</td>
<td>15.21127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.23662</td>
<td>23.66197</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.211268</td>
<td>21.12676</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.06338</td>
<td>6.338028</td>
</tr>
</tbody>
</table>

Theta

<table>
<thead>
<tr>
<th>0.0177</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.046</td>
</tr>
<tr>
<td>-0.071</td>
</tr>
</tbody>
</table>

Flows in pu Flows in MW

1 2
1 3
1 4
2 3
3 4
Line outage of line 2-3

\[
\begin{array}{cccc}
\text{FROM} & \text{TO} & x & 1/x \\
1 & 2 & 0.2 & 5 \\
1 & 3 & 0.3 & 3.33333 \\
1 & 4 & 0.3 & 3.33333 \\
2 & 3 & 0.3 & 0 \\
3 & 4 & 0.4 & 2.5 \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & -5 & 0 & 0 \\
3.33333 & 0 & -3.333 & 0 \\
3.33333 & 0 & 0 & -3.333 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2.5 & -2.5 \\
\end{array}
\]

\[
\begin{array}{cccc}
11.667 & -5 & -3.333 & -3.33333 \\
-5 & 5 & 0 & 0 \\
-3.333 & 0 & 5.8333 & -2.5 \\
-3.333 & 0 & -2.5 & 5.83333 \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & 5.8333 & -2.5 \\
0 & 0 & -2.5 & 5.83333 \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0.2 & 0 & 0 \\
0 & 0 & 0.21 & 0.09 \\
0 & 0 & 0.09 & 0.21 \\
\end{array}
\]

\[
\begin{array}{cccc}
P_{\text{net}} & \Theta & \text{flows} & \text{flows MW} \\
0.3 & 0 & -0.3 & -30 \\
0.3 & 0.06 & 0.3 & 30 \\
-0.3 & -0.09 & 0 & \text{out} \\
-0.3 & -0.09 & 0 & \text{out} \\
3E-17 & 3E-15 & 3 & 4 \\
\end{array}
\]

Using LODF

\[
P_{13\text{new}} = P_{13\text{orig}} + 0.7 \times P_{23\text{orig}} \\
30 = 15.211 + 0.7 \times 21.127
\]
15.21 + 23.66 - 8.87 = 30
Use LOOF calc. Plus on line 1-3 with Lin 23 out.

Orig. Plans. \(P_{13}^o = 15.21 \)
\(P_{23}^o = 21.127 \)

\(\text{LOOF} = 0.7 \)
\(1-3, 2-3 \)
\(\begin{array}{c|c}
 & 1 \\
\hline
\text{Min} & \text{drop} \\
\hline
\end{array} \)

\(P_{13}^* = 15.21 + 0.7 \times 21.127 = 30.0 \)

Outage on 1-2, 1-3, 1-4

Any of them cause overload?

\(F_{14}^* = F_{14}^o + \text{LOOF} \cdot F_{13}^o \)
\(\leq 25 \text{ MW} \)
\(F_{14}^* = 23.6 + 0.4167 \times 15.21 = 30.0 \text{ min} \)

Overload

\(F_{3-4}^* = F_{3-4}^o \cdot F_{14}^o \)
\(6.34 + 1 \cdot 23.66 = 30 \text{ MW} \)

Overload
Gen 1 will reduce output to reduce load.

Until No overload with output.

(First continuing overload)

\[F_{i-4} = F_{i-4}^0 + PTDF \Delta P \]

\[F_{i-4}^0 = F_{i-4} \text{ (load 1-4, 1-4, 1-4)} \]

\[F_{i-4} = (F_{i-4}^0 + PTDF \Delta P) + LUOF (F_{i-3} + PTDF \Delta P) \]

Flow on 1-4 with \(\Delta P \) (Red gen Bus) Red (Red Bus 4)

AND output of line 1-2
Consider the power system network below. Both generators are at 30 MW output and both loads are consuming 30 MW. Bus 1 is the reference bus.

![Diagram of the power system network with buses labeled 1, 2, 3, 4, and 5, and lines connecting them with power flow indications.]

The data for this network is as follows:

<table>
<thead>
<tr>
<th>From Bus</th>
<th>To Bus</th>
<th>x</th>
<th>MW Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.20</td>
<td>35.0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0.30</td>
<td>35.0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0.30</td>
<td>25.0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.30</td>
<td>40.0</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.40</td>
<td>25.0</td>
</tr>
</tbody>
</table>

The initial power flows are calculated with a DC Power Flow and result in the base flows below. The line flow limits are also shown with the percent loading.

BASE TRANSMISSION LOADING

<table>
<thead>
<tr>
<th>Path</th>
<th>From</th>
<th>To</th>
<th>Low Flow</th>
<th>Flow</th>
<th>High Flow</th>
<th>Percent Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-35.0</td>
<td>-8.87</td>
<td>35.0</td>
<td>25.4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-35.0</td>
<td>15.21</td>
<td>35.0</td>
<td>43.5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>-25.0</td>
<td>23.66</td>
<td>25.0</td>
<td>94.6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>-40.0</td>
<td>21.13</td>
<td>40.0</td>
<td>52.8</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>-25.0</td>
<td>6.34</td>
<td>25.0</td>
<td>25.4</td>
</tr>
</tbody>
</table>
AFAC T MATRIX

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitored</td>
<td>1 to 2</td>
<td>1 to 3</td>
<td>1 to 4</td>
<td>2 to 3</td>
</tr>
<tr>
<td>Line</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>-0.7183</td>
<td>-0.1972</td>
<td>-0.0845</td>
<td>0.2817</td>
</tr>
<tr>
<td></td>
<td>-0.2958</td>
<td>-0.4930</td>
<td>-0.2113</td>
<td>-0.2958</td>
</tr>
<tr>
<td></td>
<td>-0.1268</td>
<td>-0.2113</td>
<td>-0.6620</td>
<td>-0.1268</td>
</tr>
</tbody>
</table>

POWER TRANSFER DISTRIBUTION FACTOR (PTDF) MATRIX

<table>
<thead>
<tr>
<th></th>
<th>1 to 3</th>
<th>1 to 4</th>
<th>2 to 3</th>
<th>2 to 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitored</td>
<td>1 to 2</td>
<td>1 to 3</td>
<td>1 to 4</td>
<td>2 to 3</td>
</tr>
<tr>
<td>Line</td>
<td>0.2958</td>
<td>0.4930</td>
<td>0.2113</td>
<td>0.2958</td>
</tr>
<tr>
<td></td>
<td>0.1268</td>
<td>0.2113</td>
<td>0.6620</td>
<td>0.1268</td>
</tr>
<tr>
<td></td>
<td>-0.4225</td>
<td>0.2958</td>
<td>0.1268</td>
<td>0.5775</td>
</tr>
<tr>
<td></td>
<td>-0.5915</td>
<td>0.0141</td>
<td>0.5775</td>
<td>0.4085</td>
</tr>
</tbody>
</table>

LINE OUTAGE DISTRIBUTION FACTOR (LODF) MATRIX

<table>
<thead>
<tr>
<th></th>
<th>1 to 2</th>
<th>1 to 3</th>
<th>1 to 4</th>
<th>2 to 3</th>
<th>2 to 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitored</td>
<td>1 to 2</td>
<td>1 to 3</td>
<td>1 to 4</td>
<td>2 to 3</td>
<td>2 to 4</td>
</tr>
<tr>
<td>Line</td>
<td>0.0000</td>
<td>0.7000</td>
<td>0.3000</td>
<td>-1.0000</td>
<td>-0.3000</td>
</tr>
<tr>
<td></td>
<td>0.5833</td>
<td>0.0000</td>
<td>0.4167</td>
<td>-0.3750</td>
<td>1.0000</td>
</tr>
<tr>
<td></td>
<td>0.3750</td>
<td>0.6250</td>
<td>0.3750</td>
<td>0.3000</td>
<td>-0.3750</td>
</tr>
<tr>
<td></td>
<td>-1.0000</td>
<td>0.7000</td>
<td>0.0000</td>
<td>-1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>-0.3000</td>
<td>-0.6250</td>
<td>0.3000</td>
<td>-0.3750</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
HW4 PROBLEM 1

1) Formula for calculating the A matrix:

Note that: line \(\ell \) goes from bus \(i \) to bus \(j \) and \(x_\ell \) is the line’s inductive reactance in per unit.

\[
a_{is} = \frac{1}{x_\ell} (X_{is} - X_{js}) \text{ then } \Delta f_\ell = a_{is} \Delta P_s, \text{ that is for a change in power at bus } s \text{ of } \Delta P_s \text{ the change in line flow } \ell \text{ is } \Delta f_\ell \text{ and is found by multiplying the change in power at bus } s \text{ times the a factor. Note that when the bus power at bus } s \text{ is changed there is a compensating and opposite change in power on the reference or swing bus.}
\]

The terms \(X \) are from the \(X \) matrix and the subscripts are for the \(X \) matrix row and column, thus, \(X_{is} \) is the term in row i column s of the \(X \) matrix.

2) Formula for calculating the PTDF factors.

\[
PTDF_{s,r,\ell} = \frac{1}{x_\ell} \left((X_{is} - X_{ir}) - (X_{js} - X_{jr}) \right)
\]

if \(s \) is the reference bus, \(X_{is} = 0 \) and \(X_{js} = 0 \)

if \(r \) is the reference bus, \(X_{ir} = 0 \) and \(X_{jr} = 0 \)

if \(i \) is the reference bus, \(X_{is} = 0 \) and \(X_{ir} = 0 \)

if \(j \) is the reference bus, \(X_{js} = 0 \) and \(X_{jr} = 0 \)

The formula for \(PTDF_{s,r,\ell} \) is the PTDF for the effect on line \(\ell \) of a transaction from source bus \(s \) to receiving bus \(r \).

3) Formula for calculating the Line outage distribution factors, LODF.

For the LODF we introduce line \(k \) which goes from bus \(n \) to bus \(m \). Line \(k \) will be dropped and the LODF gives us the effect of line \(k \) out on the flow on line \(\ell \) which goes from bus \(i \) to bus \(j \) as before.

The LODF giving the change in flow on line \(\ell \) for an outage of line \(k \) is

\[
LODF_{\ell,k} = PTDF_{n,m,\ell} \left(\frac{1}{1 - PTDF_{n,m,k}} \right)
\]

So that:

\[
\Delta f_\ell = LODF_{\ell,k} P_{nm}
\]

Thus we simply multiply the preoutage flow on line \(k \), \(P_{nm} \) or \(f_\ell^0 \), times \(LODF_{\ell,k} \) to get the change in flow on line \(\ell \), then the new flow on line \(\ell \), \(\tilde{f}_\ell \), with an outage on line \(k \) is: (where \(f_\ell^0 \) is the preoutage flow, i.e. flow before the outage, while \(\tilde{f}_\ell \) is the flow after the outage.) \(\tilde{f}_\ell = f_\ell^0 + LODF_{\ell,k} f_k^0 \)
a) In this problem we are only concerned with outages on lines 1-2, 1-3 and 1-4. Do any of these outages, taken one outage at a time, result in overloads? If so how much and what lines are overloaded.

b) The generator at bus 1 is going to reduce its output and at the same time the load at bus 4 is going to reduce its load until there are no overloads due to the lines listed in part a above. How much should the load on bus 4 and the generation on bus 1 be reduced to eliminate all overloads.
Problem 2

A) Overloads: Drop line 1-3, overload on 1-4

\[F_{14}^{\text{new}} = F_{1-4} + \text{LODF} \times F_{13} \]

\[= 23.66 + 0.4167 \times 15.21 = 30 \text{ MW} \]

Drop line 1-4 overload 3-4

\[F_{3-4}^{\text{new}} = F_{34} + \text{LODF} \times F_{1-4} \]

\[= 6.34 + 1.0 \times 23.66 = 30 \text{ MW} \]

B) Fail line 1-4

\[F_{1-4}^{\text{after Trans}} = F_{1-4} + \text{PTDF} \times \Delta P \]

\[F_{1-4}^{\text{final}} = (F_{1-4} + \text{PTDF} \times \Delta P) + \text{LODF}(F_{13} + \text{PTDF} \times \Delta P) \]

\[= (23.66 + 0.662 \times \Delta P) + 0.4167 (15.21 + 0.2113 \Delta P) \]

\[2.5 = (23.66 + 0.4167 \times 15.21) + (0.662 + 0.4167 \times 0.2113) \Delta P \]

\[2.5 = 30 + 0.75 \Delta P \]

\[\Delta P = -6.666 \text{ MW} \]
Prob 2) B cont

For line 3-4

\[P_{3-4} = \left(\frac{\Delta P}{F_{3-4}} \right) + \text{load} \left(\frac{F_{1-4} \cdot \text{TD} \cdot \Delta P}{1-4} \right) \]

\[= \left(\frac{6.34 + 3.38 \, \Delta P}{3414} \right) + 1.0 \left(\frac{23.66 + 6.62 \, \Delta P}{1-4} \right) \]

\[25 = 30 + 1.0 \, \Delta P \]

\[\Delta P = -5 \]

Answer to part B:

\[\Delta P \] is -6.666

So reduce load 4 by 6.666 MW

and Bus 1 by 6.666 MW.
» runsecurity

Pinj =

0.3000 0.3000 -0.3000 -0.3000

BASE TRANSMISSION LOADING

<table>
<thead>
<tr>
<th>Path</th>
<th>From</th>
<th>To</th>
<th>Low</th>
<th>Flow</th>
<th>High</th>
<th>Percent Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-35.0</td>
<td>-8.87</td>
<td>35.0</td>
<td>25.4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-35.0</td>
<td>15.21</td>
<td>35.0</td>
<td>43.5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>-25.0</td>
<td>23.66</td>
<td>25.0</td>
<td>94.6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>-40.0</td>
<td>21.13</td>
<td>40.0</td>
<td>52.8</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>-25.0</td>
<td>6.34</td>
<td>25.0</td>
<td>25.4</td>
</tr>
</tbody>
</table>

CONTINGENCY LOADING

<table>
<thead>
<tr>
<th>drop 1 to 2 mon</th>
<th>Path</th>
<th>From</th>
<th>To</th>
<th>Low</th>
<th>Flow</th>
<th>High</th>
<th>Percent Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 to 3</td>
<td>9.00</td>
<td>35.0</td>
<td>35.0</td>
<td>25.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 to 4</td>
<td>21.00</td>
<td>25.0</td>
<td>25.0</td>
<td>84.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 to 3</td>
<td>30.00</td>
<td>40.0</td>
<td>40.0</td>
<td>75.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 to 4</td>
<td>9.00</td>
<td>25.0</td>
<td>25.0</td>
<td>36.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 to 2</td>
<td>0.00</td>
<td>35.0</td>
<td>35.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 to 4</td>
<td>30.00</td>
<td>25.0</td>
<td>25.0</td>
<td>120.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 to 3</td>
<td>30.00</td>
<td>40.0</td>
<td>40.0</td>
<td>75.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 to 4</td>
<td>-0.00</td>
<td>25.0</td>
<td>25.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 to 2</td>
<td>0.00</td>
<td>35.0</td>
<td>35.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 to 4</td>
<td>30.00</td>
<td>35.0</td>
<td>35.0</td>
<td>85.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 to 3</td>
<td>30.00</td>
<td>40.0</td>
<td>40.0</td>
<td>75.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 to 4</td>
<td>30.00</td>
<td>25.0</td>
<td>25.0</td>
<td>120.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 to 2</td>
<td>-30.00</td>
<td>35.0</td>
<td>35.0</td>
<td>85.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 to 3</td>
<td>30.00</td>
<td>35.0</td>
<td>35.0</td>
<td>85.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 to 4</td>
<td>30.00</td>
<td>25.0</td>
<td>25.0</td>
<td>120.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 to 3</td>
<td>-0.00</td>
<td>25.0</td>
<td>25.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 to 2</td>
<td>-11.25</td>
<td>35.0</td>
<td>35.0</td>
<td>32.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 to 3</td>
<td>11.25</td>
<td>35.0</td>
<td>35.0</td>
<td>32.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 to 4</td>
<td>30.00</td>
<td>25.0</td>
<td>25.0</td>
<td>120.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 to 3</td>
<td>18.75</td>
<td>40.0</td>
<td>40.0</td>
<td>46.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

************** OVERLOADS DETECTED **************

**

>>
runsecurity

BASE TRANSMISSION LOADING

<table>
<thead>
<tr>
<th>Path</th>
<th>From</th>
<th>To</th>
<th>Low</th>
<th>Flow</th>
<th>High</th>
<th>Percent Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-35.0</td>
<td>-8.87</td>
<td>35.0</td>
<td>25.4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-35.0</td>
<td>15.21</td>
<td>35.0</td>
<td>43.5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>-25.0</td>
<td>23.66</td>
<td>25.0</td>
<td>94.6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>-40.0</td>
<td>21.13</td>
<td>40.0</td>
<td>52.8</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>-25.0</td>
<td>6.34</td>
<td>25.0</td>
<td>25.4</td>
</tr>
</tbody>
</table>

CONTINGENCY OVERLOAD
- drop 1 to 3 mon 1 to 4: contflow 30.00, contlimit 25.0, rating 25.0, overload% 120.0
- drop 1 to 4 mon 3 to 4: contflow 30.00, contlimit 25.0, rating 25.0, overload% 120.0
- drop 2 to 3 mon 1 to 4: contflow 30.00, contlimit 25.0, rating 25.0, overload% 120.0
- drop 3 to 4 mon 1 to 4: contflow 30.00, contlimit 25.0, rating 25.0, overload% 120.0

************** OVERLOADS DETECTED **************

runsecurity

BASE TRANSMISSION LOADING LINE 2-3 OUT

<table>
<thead>
<tr>
<th>Path</th>
<th>From</th>
<th>To</th>
<th>Low</th>
<th>Flow</th>
<th>High</th>
<th>Percent Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-35.0</td>
<td>-30.0</td>
<td>35.0</td>
<td>85.7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-35.0</td>
<td>30.0</td>
<td>35.0</td>
<td>85.7</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>-25.0</td>
<td>30.0</td>
<td>25.0</td>
<td>120.0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>-25.0</td>
<td>-0.0</td>
<td>25.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

CONTINGENCY OVERLOAD
- drop 1 to 2 mon 1 to 3: contflow 50.00, contlimit 35.0, rating 35.0, overload% 142.9
- drop 1 to 2 mon 1 to 4: contflow 50.00, contlimit 25.0, rating 25.0, overload% 200.0
- drop 1 to 3 mon 1 to 4: contflow 60.00, contlimit 25.0, rating 25.0, overload% 240.0
- drop 1 to 3 mon 3 to 4: contflow -30.00, contlimit 25.0, rating 25.0, overload% 120.0
- drop 1 to 4 mon 1 to 3: contflow 60.00, contlimit 35.0, rating 35.0, overload% 171.4
- drop 1 to 4 mon 3 to 4: contflow 30.00, contlimit 25.0, rating 25.0, overload% 120.0
- drop 3 to 4 mon 1 to 4: contflow 30.00, contlimit 25.0, rating 25.0, overload% 120.0

************** OVERLOADS DETECTED **************
